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1. Motivation
Information and Physics

Norbert Wiener

Information is information not matter or energy. [?], p132

Carl-Friedrich von Weizsäcker

Jede Alternative von Möglichkeiten [...] läßt sich entscheiden
indem man sukzessive Ja/Nein Entscheidungen macht. [?], [?], [?]

Rolf Landauer

Information is Physical. [?]

John Archibald Wheeler

It from a bit: Every physical quantity, every it,
derives its ultimate significance from bits, binary yes-or-no indications. [?] [?]

David Deutsch

It from qubit. [?]
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1. Motivation
Attempts to Define Information

Information is a concept of resolving uncertainty. (bad: just another word)

Information as a means for constructing objects (will talk a bit on this)

Algorithmic information theory, complexity theory
Chaitin, Solomonov, Kolmogorov, Martin-Löf, Blum

Information as choice of the actual among the potential (will talk a lot on this)

Probabilistic information theory: Wiener, Shannon, Nyquist, Hartley

Information as a human cognitive construct (will not talk about this)

Belief: Calculus of human belief: Bayes, Pearl. [?], [?].
Frequentist: Analysis of empirical outcomes. [?]
Propensity: Tendency of favoring an outcome: Peirce, Popper. [?], [?].
Economy: Readyness to engage in a bet. Ramsey [?], [?]
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2. (Non-)Determinism

Information has something to do with
uncertainty

how to build something
what to expect in the next experiment

Uncertainty is related to
non-determinism.

What are these two concepts:
determinism
non-determinism
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2. (Non-)Determinism
Related Concept: Determinism

Hypothesis of Determinism
We can describe the state of a system at a specific moment in time.
Given suitable initial conditions, we can predict the state in the future.

Problem:
There is no concept of (global) time.
Thus there is no concept of state.
The definition of state and of determinism fails.
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2. (Non-)Determinism
Debate on Determinism

Aspect 1: Physics: SRT & ART
Idea 1: Invent notions of local state and local determinism.
Idea 2: Glue local states together to an artificial event or spacetime manifold.

Aspect 2: Distributed computing
Aspect 2a: Computing is a subset of physics, so aspect 1 applies.
Aspect 2b: Even without this (i.e. computing in Newtonian space×time) there is a problem.

Set of nodes
Communicate about their local states
Communication incurs a delay (in contrast to physics we do not know how much)
During delay remote state can change (and computation turns wrong)
Idea 1: Causal models of distributed computation (aka Petri-nets)
Idea 2: Virtually synchronous and virtually serialized computations
Use models which (incorrectly) assume synchronous or serialized computation.
Problem: Incorrect assumptions may cause incorrect results.
If a shift in time does not change the computed result – the programmer does not care.
Thus: Restrict model to computations that are equivalent in result to serialized computation.
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2. (Non-)Determinism
Against Determinism

Arguments:
1 There is no global concept of time and thus of state (local state workarounds exist)
2 Measuring an object disturbs the object.
3 We cannot know the state of the measurement device

and thus we cannot determine the disturbance produced by measurement.
4 Measured state is established only after the measurement.
5 The environment affects the measurement process (Zurek: einselection)
6 Most interpretations of QM postulate non-determinism (von Neumann measurement)
7 State and state change cannot both be determined at the same moment in time (Heisenberg)
8 State and state change cannot, each at a time, be precisely determined.

Epistemological Paradox:
1 We never can do the same experiment twice.
2 The second experiment always is different: We know the result of the first.
3 Determinism is not accessible to experimentation.
4 Determinism is not a reasonable notion in (at least: empirical) science.
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2. (Non-)Determinism
Related Concept: Non-Determinism

Hypothesis of Non-Determinism and Disorder "Regellosigkeit"
There is no rule telling "nature" what to do next.

Laplacian Principle of Indifference:
What happens if "there are no reasons" to prefer a specific outcome
over all possible outcomes?

Interpretations of "there are no reasons":
1 Practical limit: We could know but will not: Universe is too complex.
2 Systematic limit: We cannot access the reasons: We are somehow limited.
3 Conceptual limit: Determinism is the wrong concept.

% Î ½ 11 188 2. (Non-)Determinism È C.H.Cap



3. Where are the Difficulties?

Important differences between mathematical
and physical models.

Einstein (Vortrag "Geometrie und Erfahrung",
27. 1. 1921, Preussische Akademie der
Wissenschaften)

Insofern sich die Sätze der Mathematik auf die
Wirklichkeit beziehen, sind sie nicht sicher, und
insofern sie sicher sind, beziehen sie sich nicht
auf die Wirklichkeit.
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3. Where are the Difficulties?
Physics and Mathematics

Physics: The experiment says different.
Theory dismissed as wrong.
Theory may remain as useful approximation. (eg: Thermodynamics, classical mechanics)

Mathematics: There is no experiment.
What does this mean?
Isn’t mathematics restricted by the laws of logic?
No!
Mathematics is only restricted by the decisions of the designer of the mental model.

Question 1: Was god restricted by the laws of logic?

Question 2: Is logic empirical? [?], [?].
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3. Where are the Difficulties?
What is Logic?

Symbols (aka formulae) describe things in my mind.

Reasoning about things in my mind is replaced by operations on symbols. x2 → 2x

Mind: May have states true, false but also unknown, unsure, not-determined,
highly-probable, improbable and more.

Important: true has no magic meaning, it just is an (arbitrary) state of mind the designer of
the formalism wants to model (at least in modern logic).

Assume a framework for this as in φ, ϑ, . . . ` γ, α, . . .

Sequence of formulae ` sequence of formulae

` means deduce. Not necessarily connected with a notion of truth.

Could also be set, multiset, boolean algebra (classical logic), lattice (quantum logic!)
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3. Where are the Difficulties?
A First Example

S `W If (the Sun shines) we can deduce that (it is Warm outside).

S ` H If (the Sun shines) we can deduce that (everybody is Happy).

S `W∧S If (the Sun shines) we can deduce that
(it is Warm outside) and (everybody is Happy).

Let us introduce the following rule into our logic:
α ` ϕ α ` ψ

(1)
α ` ϕ ∧ ψ
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3. Where are the Difficulties?
A Second Example

$ `W If (I have one $) we can deduce that (I can buy a glass of Whiskey).

$ ` H If (I have one $) we can deduce that (I can buy a Hamburger).

Let us apply our rule:
α ` ϕ α ` ψ

(1)
α ` ϕ ∧ ψ

$ `W∧H If (I have one $) we can deduce that
(I can buy a glass of Whiskey) and (I can buy a Hamburger).

I just love logic!
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3. Where are the Difficulties?
The Second Example Revisited

$ `W If (I have one $) we can deduce that (I can buy a glass of Whiskey).
$ ` H If (I have one $) we can deduce that (I can buy a Hamburger).
$ ∧ $ `W∧H If (I have one $) and (I have one $) we can deduce that

(I can buy a glass of Whiskey) and (I can buy a Hamburger).

We rather need a different rule:

α ` ϕ β ` ψ
(2)

α ∧ β ` ϕ ∧ ψ
The old rule was:

α ` ϕ α ` ψ
(1)

α ` ϕ ∧ ψ

After some more analysis: We even need a different conjunction operator.
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3. Where are the Difficulties?
There are Several Brands of Propositional Logic

Classical Linear Logic
Multiplicative Additive

Conjunction ∧ ? u
Disjunction ∨ + t
True T 1 >
False F 0 ⊥
Implication ⇒ ( (
Negation ¬ ∼ ∼
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3. Where are the Difficulties?
Overview

1 Multiplicative linear logic: Implication consumes resources.
2 Additive linear logic: No conservation of resources.
3 Classical propositional logic: Employs the conjunction ∧

Compare:
Quantum mechanics: Measurment destroys an (assumed preexisting) status and
generates an eigenvector as postmeasurement status.
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3. Where are the Difficulties?
Why Did We Do All This?

1 There is no generic truth and no generic logic.
2 We always have to check with the goals of our modeling domain.
3 Often, we see paradoxic consequences of modeling decisions

only much later after the axiomatization.
4 The paradoxes do not point to peculiar properties of the studied objects

but to bad choices of our axiomatization.

Application:
1 Wrong: “Information does not have certain properties.”
2 Correct: “Our axiomatization of information has certain properties.”

Here:
Which concept of information is the best description of our modeling domain.
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4. Algorithmic Information Theory
Problem Statement

Let A be a finite set, whose elements are called symbols.

Let A∗ := {a1a2 . . . an | aj ∈ A, n ∈ N} ∪ {ε} be the freely generated monoid
i.e.: The set of (finite) strings together with the operation of concatenation.

A∞ := {f : N→ A | f function} is the set of infinite strings.

Question: How do we want to define
the amount of information contained in a single string w ∈ A∗ or w ∈ A∗ ∪ A∞?
1 It is a matter of choice (i.e.: a definition)
2 It is about a single string, not n strings or even limn→∞ of n strings.
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4. Algorithmic Information Theory
Example 1: Naïve Repetition

Let A be the set of ASCII symbols and w be the following word:

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Question: What are the shortest means of describing or constructing this?

1 print("yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy");
2

3 for (var num=0; num < 80; num++) {print("y");} // shorter program
4

5 for(var i=0;i<80;i++)print("y") // still shorter
6

7 i=80;while(i--)print("y") // even still shorter

Src. 1: Four programs for printing 80 copies of "y".
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4. Algorithmic Information Theory
Example 2: More Advanced

Question: What are the shortest means of describing or constructing this:

,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]ˆ_`abcdefghijklmnopqrstuvwxyz{

1 print(",-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_\`
2 abcdefghijklmnopqrstuvwxyz{");
3

4 for (var num=44; num <= 122; num++) {printChar(num);}
5

6 for (var n=44;n<=122;n++)printChar(n);

Src. 2: Two programs for printing a special ASCII string.
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4. Algorithmic Information Theory
Example 3: Infinite Strings

3.1415926535897932...

Thoughts: This is π! How would I know? Maybe just first 20 digits?

And: What is π, after all?

Maybe:
∫ +1
−1

1√
1−x2 dx But what is that?

Rather: A program, which prints out all decimal digits of π.

Note: This works for an infinite string only, if there is a program printing it.
This is not always the case.
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4. Algorithmic Information Theory
Inconstructive Strings

Theorem: There are infinite strings for which there is no program, which prints them.

Proof: The programs printing a finite or infinite string can be ordered lexicographically.

Think of them as being written down as (countably infinite) sequence.

Imagine that the representations are replaced by the string they represent:

a1(1)a1(2)a1(3) . . .
a2(1)a2(2)a2(3) . . .
a3(1)a3(2)a3(3) . . .

1 Pick a symbol different from a1(1) and call it b1
2 Pick a symbol different from a2(2) and call it b2
3 Pick a symbol different from a3(3) and call it b3 . . .

So there exists a string b1b2b3 . . . which is not in this list
and thus has no program printing it
and thus escapes every analysis by algorithmic information theory.
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4. Algorithmic Information Theory
Information

Intuition: The information given by an object equals the complexity required for
constructing this object.

Definition: The information given by a string is the length of a shortest program
printing this string.

Definition: A string is called compressible iff there exists a program printing this string
which is shorter than the string itself; otherwise it is called random.

Example: Naïvely: Things "such as" aIz4TqWWeMn90-2KqLGr40iPF7D.
Example: Strictly: Chaitin Ω and all Martin-Löf random numbers.
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4. Algorithmic Information Theory
Chaitin Omega

Chaitin Ω:
Use our lexicographic ordering of programs.
Put a 0 if the program terminates.
Put a 1 if not.
Since the halting problem is not solvable, there is no algorithm printing out Ω.
Hence there is no shortest length.
Hence the minimum length is ∞.
Hence we call this a truly random number.
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4. Algorithmic Information Theory
Problems to Solve in Algorithmic Information Theory

Problem 1: We need some notion of construction.
A Java program is fine.
A definite integral is fine, provided we can numerically approximate its value.
An arbitrary possibly "inconstructive" specification is not fine.

Problem 2: Different notions of construction concepts may lead to different lengths.
One language has a concept of a goto.
Another language has a concept of a for loop.
Another language has a concept of recursion.

Problem 3: Different encoding alphabets
Over {0, 1} a program coding will be twice as long than over {a, b, c , d}.
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4. Algorithmic Information Theory
Chaitin-Kolmogorov-Solomonoff Complexity (1)

Suppose: We know, what a computational concept is.

More precisely: A computational concept is a "mechanism", which
1 we "feed with" an element p of a language L ("program")
2 and a finite number of natural numbers ("input")
3 which then "stops" after a finite number of "steps" and "outputs" a string ("result")
4 or never stops ("infinite loop")
5 and which fulfills some technical conditions

1 It provides a partial recursive function β : L × N∗ ↪→ N
2 satisfies the UTM (Universal Turing Machine) property
3 satisfies the SMN (Kleene parametrisation or partial evaluation) property

Even more precisely: Attend a 2 term-filling lecture series in theoretical computer
science and/or read the texts [?], [?].
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4. Algorithmic Information Theory
Chaitin-Kolmogorov-Solomonoff Complexity (2)

Let β : L × N∗ ↪→ N be a computational concept.

The Kolmogorov complexity of a word1 is the length of the shortest program
which stops on the empty input and outputs the word w .

γβ(w) := min({len(p) | p ∈ L, β(p, ε) = w})

Problem: γβ depends on the computational concept β.

Solution: The dependency is not very strong: [?,?], [?], [?,?].

The Kolmogorov complexities of two computational concepts β1 and β2
differ at most by an additive constant which holds uniformly for all words w :

∀β1, β2 : ∃Cβ1,β2 : ∀w : −Cβ1,β2 < γβ1(w)− γβ2(w) < Cβ1,β2
1Natural numbers in some encoding.
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4. Algorithmic Information Theory
Practical Problem

Theorem: Given a word w and a computational concept β, the
Chaitin-Kolmogorov-Solomonoff complexity γβ cannot be algorithmically determined.

Determining γβ(w) is one of the many not computable
(more precisely: semi-computable) problems of computer science. [?]

Sad consequences:
Despite its theoretical attractiveness it is
useless for all systematic practical purposes.
γβ(w) is known for only the most trivial examples so it is
useless even for all interesting practical purposes.
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5.1 Introduction
What do we want to achieve?

Goal: Information as choice of the actual in the set of the potential.
We want to quantify the size of a set.

Ansatz 1: Intuition of counting, leads to the concept of cardinality.

Ansatz 2: Intuition of contents, leads to the concept of a measure.

Both approaches produce interesting problems:
often ignored in applications (compare: Dirac δ-"function"/ distribution)
deemed solvable by theory (compare: Schwartz distributions)
point to fascinating problems in the non-set-theoretic foundations of mathematics

Categorial (topoi) foundations have recent applications in quantum physics
[?,?], [?], [?,?,?], [?], [?].
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5.2 Cardinality
Concept of Cardinality

Two sets are said to be equipotent,
iff there exists a bijective function between them.
Nice and easy for the finite case.

1OO

��

2OO

��

3OO

��

4OO

��
a b c d

Big problem with infinite sets:
A set may be equipotent to a true subset
even to its naïve "half".

1OO

��

2OO

��

3OO

��

4OO

��

. . .

2 4 6 8 . . .

Even worse with the continuum:
(−∞,+∞) = R, half-R, i.e. (−∞, 0),
and arbitrarily "small" non-empty open intervals (a, b) all are equipotent.

Conclusion: Cardinalities are a bad approach
to model our intuition of set size and information theory in infinite sets.
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5.3 Measure
Concept of Measure

Find all functions of all subsets of n-dim. space, µ : 2R
n → [0,∞], which satisfy:

(1) Scaling: Unit cubes have measure 1: µ([0, 1]n) = 1
Empty set has measure zero: µ(∅) = 0

(2) Translation Invariance:

∀A ⊆ Rn, ~x ∈ Rn : µ(A + ~x) = µ(A)

(3) Rotation and Reflection Invariance:

∀A ⊆ Rn, f ∈ (S)O(n) : µ(f (A)) = µ(A)

(4) σ-Additivity: For every family (Aj)j∈N of subsets which are pairwise
non-overlapping (=disjoint), i.e. i 6= j ⇒ Ai ∩ Aj = ∅ we have

µ(]j∈J Aj) =
∑

j∈J µ(Aj)

Note: Summands non-negative, series absolute-convergent, thus sequence of summation irrelevant.
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5.3 Measure
"No-Go Theorem" of Measure Theory

Theorem by Vitali: There are no such functions! [?].
The fundamental problem of measure theory cannot be solved.

Paradox of Banach-Tarski: [?], [?], [?].

The unit ball in R3, i.e. B3 = {~x ∈ R3 | ‖~x‖ = 1} (with volume 4π/3)
1 can be represented as union of 5 pairwise disjoint subsets
B3 = T1 ] T2 ] T3 ] T4 ] T5 with i 6= j ⇒ Ti ∩ Tj = ∅,

2 onto which translations, rotations and reflections can be applied
3 such that the union of the resulting sets are a unit ball of twice the radius
{~x | ‖~x‖ = 2} (and eight times the volume).

This is in fundamental contradiction with our intuition of a volume!
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5.3 Measure
Explanation and Solution

Explanation for Vitali:
There are sets which are not measurable in any reasonable sense.

Explanation for Banach-Tarski:
Partition a measurable set into several non-measurable sets.
Work on those using translations, rotations and reflections.
Union is a measurable set of twice the volume.
Blow-up happens "under the radar" on sets which are not measurable.

The set R3 of triples of real numbers does not reflect our intuition of content.
It is merely a vague approximation thereof! We need...
1 Additional structures: Topologies, measures, distances
2 Restriction of concepts: Borel σ-algebras, measurability; continuity
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5.3 Measure
"Repairing" Measure Theory

Attempt 1: Remove set theory axioms allowing proof of Banach-Tarski paradox.
1 Powerset Axiom: Cannot remove, needed for higher order constructions.
2 Infinity Axiom: Cannot remove, needed for construction of natural numbers.
3 Choice Axiom: Removes inconstructive results, leads to intuitionistic logic.

Only choice: Remove axiom of choice.

But: Produces unpleasant mathematics and still is said to allow some variants of the
Banach-Tarski paradoxon, according to[?].

Attempt 2: Restrict notion of a measurable set.
Only some subsets will be considered measurable. µ : A → [0,∞] with A ( 2R

n
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5.3 Measure
Definition: Measurable Space

A measurable space is a pair (Ω,A) consisting of a set Ω and a set A ⊆ 2Ω of subsets
of Ω. The elements of A are called A-measurable sets.

The following must hold:
1 A contains the set Ω itself.
2 A is closed under set-complement: ∀A ∈ A : {A ∈ A
3 A is closed under countable union: ∀(Aj ∈ A)j∈N : ∪j∈N ∈ A

A measure space is a triple (Ω,A, µ) consisting of a measurable space (Ω,A)
and a σ-additive function µ : A → [0,+∞] = R+

0 ∪ {+∞}.

Core idea: σ-additivity is not required for all subsets of Ω
but only for the measurable subsets of Ω.
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5.3 Measure
Easy Examples: Finite and Countable Infinite Case

Finite case: Note: The base set Ω is finite, not necessarily the measure!

Ω = {a1, a2, . . . , an} A = 2Ω µ({b1, b2, . . . bk}) =
k∑

j=1

µ({bj})

Countably infinite case:

Ω = {a1, a2, . . .} A = 2Ω µ({b1, b2, . . .}) =
∞∑
j=1

µ({bj})

In both examples:
1 all singleton sets {a} are measurable, so µ is defined on singletons.
2 the values of µ on the singletons uniquely define all values of µ on A.

% Î ½ 41 188 5. Probabilistic Information Theory 5.3. Measure È C.H.Cap



5.3 Measure
Advanced Example: The Continuum Case

Let Ω = R
Let A be the smallest subset of 2R which contains all open intervals (a, b) and which is
closed under countable union, countable intersection and set complement. (Borel sets).

Define µ on intervals: µ((a, b)) = b − a.

Further results of measure theory "look good": [?], [?], [?].
A is well-defined ("smallest") and µ can be uniquely extended from intervals to A.
The no-go theorem of Vitali does not hold any more.
The Banach-Tarski paradox is no longer paradoxical.
The measure µ is not defined on all 5 partitioning sets. The congruence transformations are applied to sets

which are not measurable. We have no expectation of keeping a measure constant when transforming a set

for which no measure exists.

Can be extended to Rn using "cubes" and to topological spaces.
Concepts of density functions may be introduced.
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6. Shannon Information Theory
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6.1 Probability
Probability

Probability is the most important concept in modern science,
especially as nobody has the slightest notion what it means.

Bertrand Russell as cited in [?].
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6.1 Probability
Finite Measures and Probability Spaces

The measure µ of a measure space (Ω,A, µ) is called finite,
iff the measure only has finite values: µ : A → [0,+∞) ( [0,+∞].

A probability space is a measure space P = (Ω,A,P) with P(∅) = 0 and P(Ω) = 1.

The measure of P is called a probability measure.

Prop: If (Ω,A, µ) is a measure space with finite measure, then (Ω,A,P) with

P(X ) :=
µ(X )

µ(Ω)

is a probability space.
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6.1 Probability
Example and Counter Example

Consider: Ω = [0, 5] µ([a, b]) = b − a µ(Ω) = 5 as measure space.

Obtain: P([a, b] = b−a
5 as probability space: Equi-distribution on [0, 5].

Density: ϕ(x) = 1
5

Distribution: P([a, b]) =
b∫
a
ϕ(x)dx = Φ(b)− Φ(a) Φ(x) =

x∫
0
ϕ(x)dx

Modify: Ω = R µ([a, b]) = b − a

Problem! No longer finite: µ(Ω) = µ(R) =∞.

Norming: P(X ) = µ(X )
µ(Ω) = µ(X )

∞

Finite intervals have measure zero: P([a, b]) = b−a
∞ = 0

Infinite sets have indefinite measure: P(X ) = µ(X )
∞ = ∞

∞ = 
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6.1 Probability
Definition: Conditional Probability

Idea 1: Only consider events where the validity of a set B of properties is ensured.
Idea 2: Renormalize probability to still sum up to 1 despite smaller summation domain.

Let (Ω,A,P) be a probability space.

Let B ∈ A with P(B) 6= 0.

The conditional probability under the condition B is the function
P|B = P( · | B) : A → [0, 1]

A 7→ P|B(A) = P(A | B)

with

P(A | B) :=
P(A ∩ B)

P(B)

P( A

..

| B EE) Condition

Event
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6.2 Conditional Probability
Properties of Conditional Probability

Define the pointwise intersection of a σ-algebra: A ∩ B := {X ∩ B | X ∈ A}

(1) The conditional probability p|B : A → [0, 1] is a probability measure on (Ω,A).
Proof obligation: Show that it sums up to 1.

(2) The conditional probability p|B : A → [0, 1] induces a probability measure on (B,A ∩ B).
Proof obligation: Show proper set of base sets.

p : A → [0, 1] original probability measure

p|B : A → [0, 1] modified measure (1)

p|B : A ∩ B → [0, 1] modified measure and algebra A ∩ B
� � id // A

p|B // [0, 1] (2)
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6.2 Conditional Probability
Notation of Conditional Probability

Probability is a thing p(·) where we can fill in sets of all kinds, A, A ∩ B , and more.

The conventional notation of conditional probability breaks this.
We write p(A|B) although there is no suitable set A|B .

Better notation: p|B where we can plug in set A: p(A|B) = p|B(A).
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6.2 Conditional Probability
Theorem: Classical Bayes Rule and Bayes Chain Rule

Classical Bayes Rule: Swapping event and condition

P(A | B) =
P(A)

P(B)
P(B | A) holds for A,B with P(A),P(B) 6= 0

P(B | A)

P(B)
=

P(A | B)

P(A)
=

P(A ∩ B)

P(A) · P(B)
Classical Bayes Rule, written differently

P(A ∩ B) = P(A | B) · P(B) = P(B | A) · P(A) Bayes Chain Rule

P(A ∩ B ∩ C ) = P(A | B ∩ C ) · P(B ∩ C ) = P(A | B ∩ C ) · P(B | C ) · P(C ) Iterated chain
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6.2 Conditional Probability
Preparation: Splitting Rule

An event may be split on a single condition B

Logic: A⇔ (A ∧ B) ∨ (A ∧ ¬B)

Sets: A = (A ∩ B) ] (A ∩ {B)

A = A ∩ (A ∪ {B)

= A ∩ [(A ∪ {B)∩Ω]

= A ∩ [(A ∪ {B) ∩ (B ∪ {B)]

= [(A ∩ B) ∪ A] ∩ [(A ∪ {B) ∩ (B ∪ {B)]

= [(A ∩ B) ∪ A] ∩ [(A ∩ B]) ∪ {B] now: distributive law
= (A ∩ B) ∪ (A ∩ {B) even: disjoint sum
= (A ∩ B)](A ∩ {B)

Thus: P(A) = P[(A ∩ B) ] (A ∩ {B)] = P(A ∩ B) + P(A ∩ {B)

Now: Apply Bayes Chain Rule twice.
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6.2 Conditional Probability
Special Case: Bayes Splitting Rule

Binary case: Assume: P(B),P({B) 6= 0.

P(A) = P(B)P(A | B) + P({B)P(A | {B)

General case: Assume: X1,X2, . . . ,Xn is a partition of Ω with ∀i : P(Xi ) > 0.

∀X ∈ A : P(X ) =
n∑

i=1

P(Xi )P(X | Xi )

∀X ∈ A,P(X ) > 0 : P(Xi | X ) =
P(Xi )P(X | Xi )∑n
i=1 P(Xi )P(X | Xi )
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6.2 Conditional Probability
Splitting Rule and Double Slit Experiment (1)

B

{B

A

Fig. 1: Double Slit Experiment

P(A)=P(B)P(A | B) + P({B)P(A | {B)

Experiment produces black curve P(A).
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6.2 Conditional Probability
Splitting Rule and Double Slit Experiment (2)

Nice: Splitting works in classical propositional logic (which is distributive).

Nice: Splitting works in set theory (which is distributive).

Cave: Splitting does not work in quantum mechanics – but why?

Reasons why nature behaves differently than theory suggests are speculations!

Nature does not meet one of our implicit assumptions leading to P(A) = P(A).
1 Particle assumption: Electron does not pass through either B xor {B.
2 Experiment: Measurement of green = red + blue does not make sense. These are two

different experiments, the addition of whose values does not correspond to a single physical
experiment.

3 Counterfactual definiteness: Cannot assume that properties we did not really measure
have a definite value. (Eg: Theoretizing on the value red could have while actually measuring
blue.)

4 Distributivity: Quantum logic is not distributive but needs an orthomodular law. [?]
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6.2 Conditional Probability
Definition and Proposition: Independence

Definition: Two events X ,Y ∈ A of a probability space (Ω,A,P) are called
independent, iff their "probabilities multiply"; more formally iff:

P(X ∩ Y ) = P(X ) · P(Y )

Proposition: In case the respective conditional probabilities exist:
Two events X and Y are independent, if and only if
conditioning one event by the other does not change its probability.

P(X |Y ) = P(X ) P(Y |X ) = P(Y )

Proof: Directly from the definition of conditional probability.

This criterion gives a better intuitive understanding of independence.
This criterion provide a worse formal definition, as it is less general.
(Since it only holds in cases where conditional probabilities exist).
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6.3 Information
Definition: Information

The information content I of a probability space P = (Ω,A,P) is the function

I : A → [0,+∞] with I (A) := − logr ( P(A) )

r Name of unit
2 bit
e nat
10 Hartley

Tab. 1: Units for measuring information content.

Core consequence: Information content of independent events is additive:

P(X ∩ Y ) = P(X ) · P(Y )⇒ I (X ∩ Y ) = I (X ) + I (Y )

% Î ½ 56 188 6. Shannon Information Theory 6.3. Information È C.H.Cap



6.3 Information
Information and Probability

From an algebraic point of view
information and probability
are isomorphic (i.e. identical).

Similarly, for a slide-rule,
adding and multiplying is just a
matter of (logarithmic) scales.

With regard to independence:
Independent probability multiplies.
Independent information adds.

(R,+)

exp

""
(R+, ·)

log

aa
0

exp

��
1

log

[[

a + b

exp
,,

exp(a + b) = exp(a) · exp(b)

log

kk

log(u) + log(v) = log(u · v)

exp

++
u · v

log

ll
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7.1 Basic Definitions
Intuition: Finite Memoryless Information Sources

Finite: From a finite number of different (digital) symbols one symbol is provided.
Extending probability from elements (singleton sets) to sets is trivial σ-additivity:

Start with a function π : A→ [0, 1] for symbol probability
Extend to p : 2A → [0, 1] with p(X ) :=

∑
ξ∈X π(ξ) for set probability

We could also consider countably infinite or uncountable sets (analogue signals).
Then, continuity, convergence and σ-algebras become important (technical) issues.
Memoryless: Assume a repetition of experiments and
1 probability is time-independent ⇒ can model by one value
2 repeated experiments are pairwise independent ⇒ probabilities multiply
3 in repeated experiments, relative symbol frequency converges to probability

Note: 3 is not guaranteed but a seriously restricting assumption. Law of large numbers holds only
"almost surely" or in adapted notions of convergence and under (strong) conditions of independence,
which cannot naturally be assumed to hold in nature. Examples see [?] and [?].
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7.1 Basic Definitions
Definition: Finite Memoryless Information Sources

A finite, memoryless information source is a pair S = (A, p) consisting of
1 a finite set A, whose elements are called symbols
2 a probability measure p : 2A → [0, 1]

Notation: Often p(a) is used for p({a}).
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7.1 Basic Definitions
Random Variables, Expectation Values and Conditions

A random variable is a finite, memoryless information source (A, p)
together with a function f : A→ R.
The expectation value of a random function ((A, p), f )
is defined as the sum of the values weighted by the respective probabilities

E(A,p)(f ) :=
∑
a∈A

p(a) · f (a)

The conditional expectation value of random function ((A, p), f )
(under a condition B ⊆ A)
is the expectation value of f under the conditional probability (of said condition B).

E(A,p)(f ) = E|B(f ) =
∑
a∈A

p(a|B) · f (a) =
∑
a∈A

p({a} ∩ B)

p(B)
· f (a) =

∑
a ∈ B︸ ︷︷ ︸

Note different summation domain!

p({a})
p(B)

· f (a)
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7.1 Basic Definitions
Dice as Information Source – A Beginners Toy Example (1)

Q = (A, p) p : A→ [0, 1] f : A→ R

A = { , , , , , } ( , , , , , )
p7→ (16 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6)

( , , , , , )
f7→ (1, 2, 3, 4, 5, 6) EQ(f ) = E(A,p)(f ) = ~f · ~p =

∑6
j=1

j
6 = 7

2

Even := { , , } p(Even) = 1/2

p| Even( { } ) = p( { } | Even) =
p( { } ∩ Even )

p(Even)
=

p(∅)
1
2

= 0

p| Even( { } ) = p( { } | Even) =
p( { } ∩ Even )

p(Even)
=

1
6
1
2

=
1
3
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7.1 Basic Definitions
Dice as Information Source – A Beginners Toy Example (2)

EA,p|Even(f ) =
∑
a∈A

p|Even({a}) · f (a) =

p|Even({ }) · f ( ) + p|Even({ }) · f ( ) + p|Even({ }) · f ( )+

p|Even({ }) · f ( ) + p|Even({ }) · f ( ) + p|Even({ }) · f ( )

=
1
3
· 0 +

1
3
· 2 +

1
3
· 0 +

1
3
· 4 +

1
3
· 0 +

1
3
· 6

approach 1: summing over entire set with conditional probabilities

=
1
3
· 2 +

1
3
· 4 +

1
3
· 6

approach 2: summing only over conditioned set
= 4
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7.1 Basic Definitions
Small Remark

Why do I emphasize this difference so much, pointing it out with two different colors?

We can take two perspectives of conditioning:
1 Keep the original set but modify the summation.
2 Reduce the set and sum over the entire (new) set.

and the color choice points out these two perspectives.

These are two different mathematical objects.

They provide identical results in most cases (such as probabilities or expectations).

But there are subtle aspects which may go wrong
when defining conditional entropy important for us
when dealing with cases where we need σ-algebras not important for us
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7.2 Entropy and Redundancy
Definition: Entropy

The entropy H(S) of a source S = (A, p) is the expectation value of the
information content, i.e. the average information content of a symbol.

H(S) = Ep;∀a∈A ( I (a) ) =
∑
a∈A

p(a) · I (a) = −
∑
a∈A

p(a) · log2(p(a))
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7.2 Entropy and Redundancy
Theorem: Maximal Entropy

The maximal value of the entropy of a source with n symbols is

Hmax(n) := log2(n)

Of all sources with n symbols the (unique) source of maximal entropy,
is the source, for which all symbols are equally probable: ∀a ∈ A : p(a) = 1/n.

Informally: The higher the variance, the smaller the entropy.
1 Higher variance means: Individual symbols have higher information content

(due to their smaller probability).
2 But: These symbols also have smaller probability of occurring.
3 Thus: The effect of the smaller probability in the expectation value sum

is stronger than the effect of having a higher information content.
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7.2 Entropy and Redundancy
Definition: Redundancy: How far below what is possible?

The redundancy of a source Q is its deficit to the maximally possible entropy:

R(Q) := Hmax(Q)− H(Q)

The relative redundancy of a source Q is its redundancy after linear scaling to the
domain [0, 1]:

r(Q) := 1− H(Q)
Hmax (Q)

Interpretation: The redundancy measures how far a source stays under its possibilities
of information generation.
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7.3 Examples
Example: Binary Sources

Consider all binary sources.

Base set: A = {0, 1}. One parameter:
P(0) =: q.
Thus P(1) = 1− P(0) = (1− q).

The binary sources form a 1-parameter object
with parameter q ∈ [0, 1].

Entropy is
H(q) = −q log2(q)− (1− q) log2(1− q).

At q = P(0) = P(1) = 1/2
we get maximal entropy
Its value: Hmax(2) = log2(2) = 1.

0 0.5 1
0

0.2

0.4
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H
(q

)
=
−
q

lo
g
2(
q

)
−

(1
−

q
)
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g
2(
1
−

q
) Entropy of binary source

Fig. 2: Entropy of binary source as 1-parameter object.
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7.3 Examples
Example: Ternary Sources: Parametrization

Consider all ternary sources.

A ternary source is a 2-parameter object,
defined over a planar triangular domain in R3

{(x , y , z) | 0 ≤ x , y , z ≤ 1 ∧ x + y + z = 1}

One possible parametrization:
Base set: A = {0, 1, 2}
1. param: x := P(0) ∈ [0, 1]
2. param: y := P(1) ∈ [0, 1]

Thus: P(2) = (1− P(0)− P(1)) ∈ [0, 1].

0
0.5

1
0

0.5 1

0

0.5

1

xy

z

Triangular parameter domain

Fig. 3: Twodimensional triangular parameter domain of
ternary sources as a plane in three-dimensional space.
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7.3 Examples
Example: Ternary Sources: x-y Coordinates

Looking on triangular domain from above.
Using x and y as parameters.

We see a distortion due to the
slant projection πz on the parameter space.

Entropy is H(x , y) =
−x log2(x)−y log2(y)−(1−x−y) log2(1−x−y)

Maximal entropy at x = y = z = 1/3
has value Hmax(3) = log2(3) = 1.585 . . .

0

0.5
1

0
0.5

1

0

0.5

1

1.5

2

xy
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y
H

Entropy of ternary source in coordinates x and y

Fig. 4: Entropy of ternary source, x-y coordinates.
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7.3 Examples
Example: Ternary Sources: Orthogonal Projection

Looking on triangular domain via
orthogonal projection.

We see an equilateral triangle since the
orthogonal projection incurs no distortion.

Note the concave shape
of the entropy function.
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Entropy of ternary source in orthogonal projection

Fig. 5: Entropy of ternary source, orthogonal projection.

% Î ½ 71 188 7. Information Sources 7.3. Examples È C.H.Cap



7.3 Examples
Example: Ternary Source as Convex Object

Observations:
1 The three corners are the extremals.
2 Their convex hull is the state space.
3 Entropy is maximal in an inner point.
4 Negentropy is maximal in the extremals.

Interpretations:
1 High negentropy means
high degree of order.

2 High entropy means
high degree of disorder
and thus information content.

Entropy

0.2 0.4 0.6 0.8 1 1.2 1.4

Negentropy

−1.4−1.2 −1 −0.8−0.6−0.4−0.2

Fig. 6: Entropy and negentropy of ternary source as 2-
parameter object without projective distortion.
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7.3 Examples
Example: Recoding Ternary Sources (1)

Let A = {a, b, c} represent a ternary information source.

Goal: We want to represent this source over a binary alphabet.

Goal 2: If possible, we want to recode in a more efficient way.

We try below recoding:

Symbol Prob Recode
a x 00
b y 10
c 1− x − y 11

Observe: The average length of a code word is 2x + 2y + 2(1− x − y−) = 2.

Question: Can we do better?

Answer: Except in the case x = y = 1/3
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7.3 Examples
Definition: Prefix-Free Coding

Definition: A coding is called prefix-free, iff no element of the set of codewords
is a prefix of a codeword.

Proposition: A coding which is prefix-free allows a unique decoding.

Example: The coding a 7→ 0, b 7→ 10, c 7→ 11 with its codeword set
{0, 10, 11} is prefix-free.

Observation: This allows a unique left-to-right linear decoding:

Example: 0001110 decodes as aaacb

Counterex: If we would encode a as 1 then 11 could decode as c or as aa.
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7.3 Examples
Example: Recoding Ternary Sources (2)

Idea: Consider the following prefix-free coding:

Symbol Prob Recode
a x 0
b y 10
c 1− x − y 11

Observation:
The average length of a code word is 1x + 2y + 2(1− x − y) = 2− x .
For all cases except x = 0 (one-digit case is never used) this is a more efficient coding.
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7.4 Convexity
Convex Sets
A subset S ⊆ V of a vector space V with scalars
K ⊃ R is called convex, iff for all points ~x , ~y in S
the open line segment O(~x , ~y) is in the set S .

O(~x , ~y) := {λ~x + (1− λ)~y | λ ∈ (0, 1)}

This obviously equivalent definition
will soon become important:

O(~x , ~y) := {p1~x + p2~y | p1, p2 ≥ 0 ∧ p1 + p2 = 1}

The concept of "concave = not-convex" for sets is
occasionally found, but not useful as it produces
misunderstanding.

Fig. 7: Convex and non-convex set.
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7.4 Convexity
Convex Notions

A point of a convex set S is called extreme, iff it is not element of an open line segment
between two points of the set S .

The convex hull < S >c of a subset S of a vector space with scalars K ⊃ R is the set
< S >c := {λ~x + (1− λ)~y | ~x , ~y ∈ S , λ ∈ [0, 1]}
Two further, equivalent definitions:
1 The smallest convex superset of S .
2 The intersection of all convex supersets of S .

Convex sets are important for us due to:
Jensen inequality of classical information theory.
Pure versus mixed states in quantum information theory.
Krein-Milman Theorem: Convex sets are (often) the convex hull of their extreme points.
Thus: In math, we only need to know the extremes of convex sets.
Thus: In physics, we only need to study pure states.
Quantum-useful results in functional analysis (Hahn-Banach Theorem).
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7.4 Convexity
Convex Functions

A function f is called
convex iff its epigraph is convex.
concave iff its negative −f is convex.

Classify: (1) Convex, (2) concave and (3) others.

Convex and concave are dual to each other.
Concave = not-convex is simply wrong.

Convex functions defined over convex sets
have important extremal properties:

Maxima are on the boundaries of the convex set.
A local minimum is also a global minimum.

−3 −2 −1 0 1 2 3

0

2

4

6

8

x

y

Fig. 8: The epigraph of a function consists of
the graph and all points "above": epi(f ) :=
{(x , y) | x ∈ dom(f ) ∧ y ≥ f (x)}. Obviously,
this function is convex.
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7.4 Convexity
Convexity Rephrased

By definition: f is convex, iff the epigraph is
convex.

By the alternative definition of the line segment this
is equivalent to:

Whenever p1 + p2 = 1 for pi ≥ 0 then

p1 · f (x1) + p2 · f (x2) ≥ f (p1 · x1 + p2 · x2)

Question: Can this be generalized? Maybe to:∑
i

pi · f (xi ) ≥ f

(∑
i

pi · xi

)

f (x)

x1 p1 · x1 + p2 · x2x2

f (p1 · x1 + p2 · x2)

p1 · f (x1) + p2 · f (x2)

x

y

Fig. 9: Convex function and inequalities: The red dot is
above the blue dot. As f is convex the epigraph (above
the blue line) is convex. Thus the points on the red line
between the two green dots are in the epigraph. Thus
the red dot in the epigraph is above the blue dot on its
boundary.
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7.4 Convexity
Theorem: Jensen Inequality

When f is convex, then for pi ≥ 0 with
∑

pi = 1 the Jensen inequality holds:

∑
i

pi · f (xi ) ≥ f

(∑
i

pi · xi

)

Note: pi ≥ 0 and
∑

i pi = 1 is exactly probability theory.

Jensen can be interpreted as an inequality on expectation values:

E(f (X )) ≥ f (E(X ))
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7.4 Convexity
Convexity of Information Sources

A vector is called stochastic, iff its entries are in [0, 1] and their sum is 1.

n-ary information sources {a1, . . . , an},P may be (bijectively) represented
by stochastic n-vectors (P(a1),P(a2), . . . ,P(an) with P(ai ) ≥ 0 and

∑
i P(ai ) = 1.

Let I ⊆ Rn be the set of all n-ary information source stochastic vectors in Rn.
I is convex and an (n − 1)-dimensional simplex in Rn.
The entropy function on I is concave.
The negentropy, the negative entropy, is a convex function on I.
Negentropy is defined in physics for describing order by [?], [?].
The negentropy is maximal at the extremals of I and
has a local minimum in the interior, which is global.
The entropy is minimal at the extremals of I and
has a local maximum in the interior, which is global.
I is the convex hull of its corners: Knowing the corners means knowing the set.
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7.4 Convexity
Probability Theories as Geometries

Classical probability is (pretty much exactly) real convex geometry.

Quantum probability is complex non-commutative geometry.

Idea is:
1 Start with a geometric space S .
2 Define complex-valued functions f : S → C and operations between them.
3 Think of operator algebras – oh, this looks like algebras of observable functions.
4 Remember that there is a C? algebra approach to measurements.
5 Fall in love with these non-commutative algebras and forget the geometric space S .
6 Can we recover geometric structures when studying only this algebra?
7 Yes! We do geometry without points, only checking function algebras.
8 Similar stuff known by the ironic name of pointless topology.
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7.4 Convexity
Conceptual Similarities of Theories

Classical Information Theory
1 Pure states (strings of length 1): Only the elements of A = {a, b, c}
2 Mixed states: (Formal) convex hull of A: Elements ~x = α · a + β · b + γ · c.
3 Real, positive coefficients: α, β, γ ∈ R0
4 Normalize: May divide by α + β + γ or assume this is one.
5 Norming constraint: 〈~1, ~x〉 = α + β + γ = 1 is linear
6 Orthogonality: ~a = 1 · a + 0 · b + 0 · c and ~b, ~c form a (real) orthonormal basis.
7 Base: Only this base, no other bases, no base changes.

Quantum Information Theory
1 Pure states: Every element α · a + β · b + γ · c ∈ spanC(A)
2 Mixed states: (Formal) convex hull of projectors: Density operator.
3 Complex coefficients: α, β, γ ∈ C
4 Normalize: May divide by

√
ᾱα+ β̄β + γ̄γ

5 Invariance: Global phase plays no role.
6 Symmetry: U(3)
7 Norming constraint: 〈~x , ~x〉C = ᾱ · α + β̄ · β + γ̄ · γ = 1 is sesquilinear.
8 Orthogonality: ~a, ~b, ~c form a (complex) orthonormal basis.
9 Bases: Arbitrary base changes via U(3).
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7.4 Convexity
Fundamental Differences in Theories

State:
Classical: Does not consider 0.3 · a + 0.7 · b a state or string or character.

Represents merely an abstract, stochastically mixed information source.
Quantum: Arbitrary complex superpositions.

(1/
√
2) · a + (i/

√
2) · b is a physical state

Is not a stochastic mixture but a (pure) state.

Bases:
Classical: Only one base: The elements of A are singled out.
Quantum: All bases are created equal.

Superposition:
Classical: Not existent.
Quantum: Every state is a superposition in ∞-many ways

Quantum has two significantly different concepts of state combination.
Superposition: Phase difference allows interference phenomena.
Mixture: Similar as in classical theory.
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8. Products and Compounds

8.1. Basic Definitions

8.2. Remarks on Marginals

8.3. Factorization

8.4. Example of a Compound

8.5. Transinformation

Information and interaction &
Preparation for classical channel theory.

1. Motivation

2. (Non-)Determinism

3. Where are the Difficulties?

4. Algorithmic Information Theory

5. Probabilistic Information Theory

6. Shannon Information Theory

7. Information Sources

8. Products and Compounds

9. Information Channels

10. Kullback-Leibler Divergence

11. Overview on Coding Theorems
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8.1 Basic Definitions
Intuition behind Products and Compounds

Situation: Two finite, memoryless information sources SA = (A, α) and SB = (B, β)

Goal: We want to study pairs of results: (a, b) ∈ A× B .
We want to study sequences of results: a1a2a3 . . . ∈ An ⊆ A∗

Products: Symbol set is Cartesian product, measure is direct product.
Information sources SA and SB considered independent.
In this case we know: Probabilities multiply.

Compounds: Symbol set is Cartesian product, measure is arbitrary.
Study arbitrary probabilities which happen to exist on the product set.
Study how these probabilities deviate from the independence assumption.
Proper setting to analyze probabilistic dependencies or correlations.
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8.1 Basic Definitions
Why is this interesting? (1)

Note: Probabilistic dependency is different from causal dependency.
Science: Observes probabilistic dependencies and searches for causal explanation.
Example: Water the roof of your house to make it rain.

W The roof of my house is wet.
R It rains.

W ¬W
R 100 0
¬R 0 200

Possible Explanations of Correlations:
1 Causality: (a) R ⇒causes W xor (b) W ⇒causes R .
2 Common Cause: C ⇒causes R and C ⇒causes W .
3 Coincidence: There is no “reason”. Possible but unlikely. Need test statistics.

Spurious correlations always exist in large data corpses.
4 Mixtures: Combination of 1 , 2 , 3 .

Question: How can we distinguish these three cases?
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8.1 Basic Definitions
Why is this interesting? (2)

Experiment: Does an intervention on one variable change the other variable?
Can I make it rain by watering the roof of my house?

Research: Coincidence is a highly unsatisfactory explanation!
Find a common cause!

Einstein: Effects must be in the light cone of the cause.
Properties are localized in time-space manifold.

Schrödinger: Entanglement allows non-localized properties.

Bell: Events may be correlated better
than permitted by local causality mechanisms.

Aspect: This really happens in nature.

Problem: How can we explain correlations of space-like separated events A and B?

Idea: The explanation is consequence of a non-localized property.
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8.1 Basic Definitions
Definition: Product Source

The product of the finite, memoryless information sources SA = (A, α) and SB = (B, β)
is the information source SA × SB := (A× B, p)

where the measure p = α⊗ β on the product set is defined as follows:
1 α⊗ β is first defined on singletons (ai , bj) by (α⊗ β)(a, b) := α(a) · β(b).
2 and then extended to sets of singletons by σ-additivity.

Tensor notation ⊗:
Initially does not indicate vector spaces but corresponds to set and category theory.
Many formal connections to properties of the linear tensor theory!

Concept:
Easy in the finite case: E.g.:
p ({ (a2, b3), (a8, b6) }) = p({(a2, b3)}) + p({(a8, b6)}) = α(a2)β(b3) + α(a8)β(b6)
Much more complex in the infinite cases (for discrete and continuous scenarios).
Need to work with σ-algebras.
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8.1 Basic Definitions
Example: Product Source

A := {a1, . . . , an} B := {b1, . . . , bm} αi := α({ai}) βj := β({bj})

pij = p ( { (ai , bj) } ) = αi · βj using product yields independence
α1β1 α1β2 · · · α1βm
α2β1 α2β2 · · · α2βm
...

αnβ1 αnβ2 · · · αnβm

 =


α1
α2
· · ·
αn

(β1 β2 · · · βm
)

= ~α⊗ ~β

% Î ½ 90 188 8. Products and Compounds 8.1. Basic Definitions È C.H.Cap



8.1 Basic Definitions
Definition: Compound Source

A (binary) compound source is a source of the form S = (A× B, p), i.e. a source
where the set of symbols is a product of two sets A and B .

A := {a1, . . . , an} B := {b1, . . . , bm} pij := p( {(ai , bj)} ) = p(ai , bj)

Questions:
Can we understand a compound source as a product source?
Can we approximate a compound source by a product source?
Tools for analyzing the probabilistic dependencies:
Joint, marginal and conditional probabilities.
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8.1 Basic Definitions
Example: Compound Source with Joints and Marginals

Black: Joint probabilities pij p : A× B → [0, 1]
Blue: Marginal probabilities pA : A→ [0, 1] pB : B → [0, 1]

Defined by summing up to the matrix margin

A := {a1, a2, a3} B : = {b1, b2, b3} pij = p({(ai , bj}) = p(ai , bj)

b1 b2 b3

a1
a2
a3

p11 p12 p13
p21 p22 p23
p31 p32 p33

 p1• = p11 + p12 + p13 = pA(a1) = p({ (a1, b1), (a1, b2), (a1, b3) })
p2• = p21 + p22 + p23 = pA(a2) = p({ (a2, b1), (a2, b2), (a2, b3) })
p3• = p31 + p32 + p33 = pA(a3) = p({ (a3, b1), (a3, b2), (a3, b3) })

p•1 =
p11 + p21 + p31 =

p
B (b1 ) =

p({ (a1 , b1 ), (a2 , b1 ), (a3 , b1 ) }

p•2 =
p12 + p22 + p32 =

p
B (b2 ) =

p({ (a1 , b2 ), (a2 , b2 ), (a3 , b2 ) }

p•3 =
p13 + p23 + p33 =

p
B (b3 ) =

p({ (a1 , b3 ), (a2 , b3 ), (a3 , b3 ) }

1
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8.1 Basic Definitions
Definition: Marginals

Let p : A× B → [0, 1] be a compound with A and B finite.

pA : A→ [0, 1] pA(a) :=
∑
b∈B

p(a, b)

pB : B → [0, 1] pB(b) :=
∑
a∈A

p(a, b)

Note: Generalizes in straight-forward manner to finite products p : A1 × . . .× An → [0, 1].
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8.2 Remarks on Marginals
Notations: Abusive Conventions for Marginals

Error: We define a 2-variable function p(a, b) and then write p(a).

Abusive conventions:
p(a) used instead of pA(a) = p( {a} × B )
p(b) used instead of pB(b) = p( A× {b} )

Problem: What is p(ξ) for a variable or value ξ? �

Set notation does not hide complexity, buys clarity at the expense of more brackets �.
It is always unambiguous. �
As in p( {a1} × B ) or p( {σ} × B | A× {λ} ).

Explicit notation for marginals provides correct typing in the index.
As in pA(a1) or pB(ξ) �

Abusive convention breaks the substitution principle of Leibniz,
poses unnecessary issues for systems such as Mathematica,
destroys notational clarity and prevents reasoning by strict formula manipulation.

% Î ½ 94 188 8. Products and Compounds 8.2. Remarks on Marginals È C.H.Cap



8.2 Remarks on Marginals
Notation: Special Conditionals for Compounds

Shorthand notation:

p(a | b) := p({a} × B | A× {b})
p(a, b) := p({(a, b)})
p(b) := pB({b})

By definition: p(X | Y ) =
p(X ∩ Y )

p(Y )

Special conditionals in extensive notation:

p({a} × B | A× {b}) =
p(({a} × B) ∩ (A× {b}))

p(A× {b})
=

p({(a, b)})
pB({b})

Special conditionals in shorthand notation:

p(a | b) =
p(a, b)

p(b)

Same syntax as for single source
completely different semantics.

Problem: What is p(ξ|η) for concrete values ξ and η �
Problem: What is p(γ|γ) for a concrete value γ which happens to be an element of A and of B �
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8.2 Remarks on Marginals
Conditionals and Marginals

Conditionals from Joints and Marginals:

p(a|b) =
p(a, b)

pB(b)
=

p(a, b)∑
a∈A p(a, b)

p(b|a) =
p(a, b)

pA(a)
=

p(a, b)∑
b∈B p(a, b)

Marginals from Conditionals via Chain-Rules:

pA(a) =
∑
b∈B

p(a|b)pB(b) pB(b) =
∑
a∈A

p(b|a)pA(a)

Joints recovered from Conditionals and Marginals:

p(a, b) = p(a|b) · pB(b) p(a, b) = p(b|a) · pA(a)
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8.2 Remarks on Marginals
Why is that so?

While this looks intuitively obvious, with all the issues in p(a|b) versus p(b|a) notations
we want to check this more formally using set notation at least in one example:

p(a, b) = go to set notation
= p( {(a, b)} )

= p
(

( {a} × B ) ∩ ( A× {b} )
)

=

use definition of conditional p
(
X ∩ Y

)
= p

(
X | Y

)
· p
(
Y
)

= p
(
{a} × B | A× {b})

)
· p
(
A× {b}

)
= go back to "abusive" notation

= p(a|b) · pB(b)
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8.2 Remarks on Marginals
Technical Problems with Marginals

Problem 1: A compound is rather p : 2A×B → [0, 1] where
U ⊆ A× B and p(U) =

∑
u∈U p({u}).

Problem 2: With A or B not finite, the
∑

is not so easy to define.

Problem 3: A compound is rather p : S → [0, 1] where
S ⊆ A× B is a σ-algebra.

Good News:
1 We only need the easy case.
2 All other problems can be solved nicely.
3 Even extension to compounds with an infinite number of components.

Think of ×λ∈RAr instead of A× B.
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8.2 Remarks on Marginals
Alternative Definition 1: Marginals as Compositions

Marginals are compositions:

pA := p ◦ π−1A

A× B
πA // A

(a, b) � // a

A
π−1
A // 2A×B

a � // ({a} × B)

2A
π−1
A // 2A×B

U � // (U × B)

2A

p ◦ π−1
A

$$π−1
A // 2A×B

p // [0, 1]

U � // U × B � // p(U × B)

p ◦ π−1
A ({a})︸ ︷︷ ︸

New def

= p({a} × B) =
∑
b∈B

p({(a, b)}) =
∑
b∈B

p(a, b) = pA({a})︸ ︷︷ ︸
Old def.

Better definition – holds in arbitrary situations.

Note: We did not provide nor check proper σ-algebra conditions.
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8.2 Remarks on Marginals
Expectation Values: Extension to Vector Values

We recall:
For q : B → [0, 1] and f : B → R we can define an expectation value:

Eq(f ) :=
∑
b∈B

q(b) · f (b) ∈ R

This may be generalized from R to arbitrary real vector spaces V .

Generalization:
For q : B → [0, 1] and f : B → V we can define an expectation value:

Eq(f ) :=
∑
b∈B

q(b) · f (b) ∈ V

It represents the average vector in V with weights / probabilities given by q.
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8.2 Remarks on Marginals
Reinterpreting: Partial Conditionals as Vectors

We consider:
p(· | ·) : A× B → [0, 1]

(a, b) 7→ p(a | b)

Can be seen as vector-valued function of the second variable,
We supply the second variable and leave the first variable open.

Currying of the function:

p(·2 | ·1) : B → [A→ [0, 1]]
b 7→ p(· | b) : A → [0, 1]

a 7→ p(a | b)

Observation: For fixed b ∈ B function p(· | b) : A→ [0, 1] is the vector p(· | b) of
probabilities as given by p(a1 | b), p(a2 | b), . . . , p(an | b).
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8.2 Remarks on Marginals
Alternative Definition 2: Marginals as Expect. of Conditionals

The marginal pA is the vectorial expectation value of all vectors p(· | b).

Similar to all the p(· | b) also pA is a vector in the sense of A→ [0, 1].

Show pA = Ep(b)(p(· | b))

We know: pA(a) =
∑
b∈B

p(a|b)pB(b)
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8.3 Factorization
Products, Compounds and Factorization

Every product source is a compound source.

A compound source can be factored into a product of two sources,
if and only if the probability matrix of the compound source has rank 1.

Example: Left side shows rank 1, right side shows product factoring.α1β1 α1β2 α1β3
α2β1 α2β2 α2β3
α3β1 α3β2 α3β3

 =

α1α2
α3

 · β1
α1α2
α3

 · β2
α1α2
α3

 · β3
 ∼ ~α⊗ ~β

Generic: Compound sources generically have full rank.

Degenerate: Product sources are the highly degenerate case of rank 1.
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8.3 Factorization
Factorizables versus Compounds in Information Theory

Products: We know product structure; probability is factored.
Compounds: We know product structure; probability may be interdependent.

A = {red, blue} B = {small, large}
A× B = { (red, small), (red, large), (blue, small), (blue, large) }

Product: Probability depends only on color and size.
Compound: There is an interdependence between color and size.

Example: red is more often large than blue.

Question 1: Given a compound (A× B, p), can it be written as (A, α)⊗ (B, β)?
Question 2: Given a source (X , p), can it be written as (A, α)⊗ (B, β)?

Example: {a,b, c,d} (bad example, as it indicates a specific factorization)
Example: {a, e, i , u} (better example)
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8.3 Factorization
Factorization

Will be part of the exercises / seminar.
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8.3 Factorization
Factoring

Factoring compounds: Only a matter of linear dimension and rank
Factoring sources: Also a matter of partitioning (much higher complexity!)
If not factorizable: How close is it to a factorizable source?

We can define convex combinations (or sums) of sources:

Let A1, . . . ,An be information sources and q1 + . . .+ qn = 1 with qj ≥ 0.
The weighted sum or convex combination

∑
qjAj works as follows:

1 With probability qj select source Aj .
2 Then use this source to select a symbol of this source.

Can I describe every source as a convex combination of factorizable sources? How?
When symbol sets overlap: Direct sum or various forms of "interference".

These are just random thoughts to show that some concepts of quantum information can be
reformulated in classical language – despite the big conceptual differences in some aspects.
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8.3 Factorization
Factorizables versus Compounds in Physics

Note: Quantum physics has new state-space concepts.
Combine two quantum systems with state spaces A and B .
Resulting state space is not A× B but the much larger A⊗ B .
Need superposition and for the latter Hilbert spaces to describe this.

From space to entangled states:
Assume two spin 1/2 systems with projective state-space Q = C2/∼.
State space of the compound is Q⊗Q.
Strong correlation across space-separated system boundaries (Bell, CHSH).

Reverse question: o Can we go back from entangled states to space?
Given a holistic system, which subsystem aspects can we factor out?
How do we know the number of subsystems? And whether they are spatially separated.
What kind of separation / spatial / location properties do we find?
Is that necessarily what we plugged in (space-separation, 2x spin 1/2)
Compare: [?], [?], [?].
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8.4 Example of a Compound
Bell-Type Experiment: Setup

State Base: Let (~u, ~d) be an ON basis of C2.

Bell State: Let ψ := ( ~u ⊗ ~d − ~d ⊗ ~u )/
√
2.

Measurement Base:: Let (~a1, ~a2), (~b1, ~b2) be two ON bases of C2.

2 Observables: Let A := |~a1〉〈~a1| − |~a2〉〈~a2| B := |~b1〉〈~b1| − |~b2〉〈~b2|

Experiment: Measure A⊗ B at ψ.
1 Operators commute: A⊗ B = (A⊗ I )(I ⊗ B) = (I ⊗ B)(A⊗ I ).
2 Sequential measurement: Arbitrary sequence of A⊗ I and I ⊗ B .
3 Parallel measurement: Measure A⊗ I and I ⊗ B at space-like separated events.

Possible Results: ~a1 ⊗ ~b1, ~a1 ⊗ ~b2, ~a2 ⊗ ~b1, ~a2 ⊗ ~b2
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8.4 Example of a Compound
Bell-Type Experiment: Results

The experiment yields the following probabilities:

θ is a parameter which is the angle between the real, 3-dimensional Bloch vectors
belonging to A and B .

b1 b2

a1
1
2 sin2 θ2

1
2 cos2 θ2

1
2

a2
1
2 cos2 θ2

1
2 sin2 θ2

1
2

1
2

1
2 1

Tab. 2: Compound and marginal probabilitiesof the "Bell" compound source.
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8.4 Example of a Compound
Special Parameter Choices

θ = 0
perfect anticorrelation

b1 b2

a1 0 1
2

1
2

a2
1
2 0 1

2

1
2

1
2 1

θ = π/4
half way to center
maximal Bell violation

b1 b2

a1
2−
√

2
8

2+
√

2
8

1
2

a2
2+
√

2
8

2−
√

2
8

1
2

1
2

1
2 1

θ = π/2
zero coupling
in the "middle"

b1 b2

a1
1
4

1
4

1
2

a2
1
4

1
4

1
2

1
2

1
2 1

θ = π
perfect correlation

b1 b2

a1
1
2 0 1

2

a2 0 1
2

1
2

1
2

1
2 1

Tab. 3: Joint and marginal probabilities of the "Bell" compound source at particular values of θ.

Note 1: Every matrix is symmetric along main- & anti-diagonal. We only look at (a1, b1) and (a2, b1).
Note 2: Marginals are independent of θ and symmetric (always 1/2)
θ only influences the "inner" correlation!
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8.4 Example of a Compound
Marginals (Using Graphs)

Observations:
Marginals are constant 0.5,
independent of θ.
Probabilities (0.5) and
information content (1.0 [bit])
connected to each other as
expected.
Symmetries as expected.
Pretty boring.

π
4

π
2

3π
4

π

0.5

1

0

θ

Marginal Probabilities and Marginal Information Contents

PA(a1)

IA(a1)

PB(b2)

IB(b2)

Fig. 10: Marginal probabilities (red) and marginal information
contents (blue) of the "Bell" compound source are independent of
the parameter θ.
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8.4 Example of a Compound
Marginals (Using Formalism)

b1 b2

a1

[
0 θ = 0
1/4 θ = π/2
1/2 θ = π

]
= 1

2 sin2 θ2

[
1/2 θ = 0
1/4 θ = π/2
0 θ = π

]
= 1

2 cos2 θ2
1
2

a2

[
1/2 θ = 0
1/4 θ = π/2
0 θ = π

]
= 1

2 cos2 θ2
1
2 sin2 θ2

1
2

1
2

1
2 1

Observation (a1, b1) tells us that
1 Marginal A: a1 is there. PA(a1) = 1/2. Provides 1 bit at all θ. Boring.
2 Marginal B: b1 is there. PB(b1) = 1/2. Provides 1 bit at all θ. Boring.
3 Joint: a1 and b1 are there. P(a1, b1) = sin2(θ/2)/2.

Interesting dependency on θ, which we want to study further.
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8.4 Example of a Compound
Joints (Using Graphs, Only Probabilities)

Observations:
Highly dependent on θ.
The other two pairs
look identical.
How does information content
look like?

π
4

π
2

3π
4

π

0.1

0.2

0.3

0.4

0.5

θ

Joint Probabilities

P(a1, b1)

P(a1, b2)

Fig. 11: Joint probabilities (red). Dashed versions shows a different
pair.
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8.4 Example of a Compound
Joints (Using Graphs)

Observations:
Low probability leads to
high information content.
Logarithm produces non-linear
stretching.
Singularity: Information content
+∞ when probability is zero.

π
4

π
2

3π
4

π

1

5

10

15

θ

Joint Probabilities and Joint Information Contents

P(a1, b1)

I (a1, b1)

P(a1, b2)

I (a1, b2)

Fig. 12: Joint probabilities (red) and joint information contents (blue)
of the "Bell" compound source. Dashed versions show a different
pair.
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8.4 Example of a Compound
Analyzing the Singularity

At θ = 0 we have
probability 0
information content ∞

How does this affect entropy
as average information content?

0 · ∞ is problematic.

de l’Hopital shows: limh→+0 h · log2(h) = 0

Thus: Singularity is no problem.
Contribution to entropy is zero.

0.5 1 1.5 2

1

2

3

0
x

x · log2(x)

Fig. 13: Additive contribution of a symbol to the entropy.
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8.4 Example of a Compound
Total Contributions of Pairs to Entropy

π
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π
2

3π
4
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0

θ

Contributions to the entropy

I (a1, b1)

I (a2, b1)

I (A,B)

π
4

π
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4
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0.5

1

1.5

2

0
θ

Contributions to the entropy

I (a1, b2)

I (a2, b2)

I (A,B)

Fig. 14: Contributions of the four pairs (a1, b1), (a1, b2), (a2, b1) and (a2, b2) to the to the total entropy of the
source.
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8.4 Example of a Compound
Relative Contributions of Pairs to Entropy
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4

π
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0.2
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0.4
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θ

Relative contributions to the entropy

I (a1, b1)

I (a2, b1)
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1
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Absolute contributions to the entropy

I (a1, b2)

I (a2, b2)

I (A,B)

Fig. 15: Absolute and relative contributions of the pairs to the total entropy of the source.
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8.4 Example of a Compound
Example: "Bell" Compound: Symbol Pairs: Fresh Look

b1 b2

a1

[
0 θ = 0
1/4 θ = π/2
1/2 θ = π

]
= 1

2 sin2 θ2

[
1/2 θ = 0
1/4 θ = π/2
0 θ = π

]
= 1

2 cos2 θ2
1
2

a2

[
1/2 θ = 0
1/4 θ = π/2
0 θ = π

]
= 1

2 cos2 θ2
1
2 sin2 θ2

1
2

1
2

1
2 1

1 θ = 0: P(a1, b1) = 0. Combination is highly unlikely, which adds high amount of
pair-information (∞) to the information by a1 and b1 alone.

2 θ = π/2: P(a1, b1) = 1/4 which is the average we might expect for four pairs. No
further information added by the combination, this equals the average of the
alternatives.

3 θ = π: With a1 present we expect b1 to be present and vice versa.
a1 and b1 do not contribute their information independently.
Combination yields a loss of information.
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8.5 Transinformation
Per-Pair Transinformation: Ansatz and Definition

ai bj

Fig. 16: Venn diagram for two sets motivates the definition of an overlap.

The overlap in the Venn diagram for sets motivates the ansatz:

I (ai , bj)︸ ︷︷ ︸
info in pair

= IA(ai )︸ ︷︷ ︸
contribution of ai

+ IB(bj)︸ ︷︷ ︸
contribution of bi

− I (ai ; bj)︸ ︷︷ ︸
correction for overlap

The per-pair transinformation (also: mutual information) is defined as

I (ai ; bj) := IA(ai ) + IB(bj)− I (ai , bj)

Beware the subtle notational difference of ; versus , (another notational abuse!).
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8.5 Transinformation
Per-Pair Transinformation: Analysis

Contrary to Venn-diagram intuition
but in line with our example
the per-pair transinformation
may be negative!

Interpretation:
Negative: Common occurrence of the
two symbols is unusual.
Thus it provides additional information.
Zero: The two symbols in the pair
are stochastically independent.
Positive: One symbol in the pair can be
predicted from the other with some
chance.

π
4

π
2

3π
4

π

−5

1
2

5

0

θ

Per-Pair Transinformation

I (a1; b1)

IA(a1)

IB(b1)

I (a1, b1)

Fig. 17: Per-pair transinformation for the Bell example.
I (ai ; bj ) := IA(ai ) + IB(bj )− I (ai , bj )
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8.5 Transinformation
Expectation Value of Transinformation

The expectation value of the per-pair
transinformation over all pairs of a
compound p : A× B → [0, 1] is

I (A ; B) = E(a,b)∈A×B(I (a ; b))

I (A ; B) :=
∑

a∈A,b∈B
p(a, b) · I (a ; b)

Again surprising: The expectation value
over all pairs always is non-negative.
Formal proof see slide ??.

π
4

π
2

3π
4

π

−6

−4

−2

1

0

θ

Expectation value of transinformation

I (a1; b1)

I (a1; b2)

I (A;B)

Fig. 18: The expectation value of the transinformation
is non-negative, although the contribution of some
individual pairs may be negative.
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8.5 Transinformation
Expectation Vaue of Transinformation: Running Example
θ = 0 θ = π perfect anti correlation

b1 b2

a1 0 1
2

1
2 0 1

2

a2
1
2 0 0 1

2
1
2

1
2

1
2 1

θ = π/2 zero coupling

b1 b2

a1
1
4

1
4

1
2

a2
1
4

1
4

1
2

1
2

1
2 1

π
4

π
2

3π
4

π

0.2

0.4

0.6

0.8

1

0
0

θ

Transinformation

Expectation value of transinformation

I (A;B)(θ)

Fig. 19: The expectation value of the transinformation in
a better magnified plot.
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8.5 Transinformation
Formulae for Information and Transinformation

Information:

IA(ai ) = − log2(PA(ai )) IB(bj) = − log2(PB(bj)) I (ai , bj) = − log2(P(ai , bj))

(Per-pair) transinformation:

I (ai ; bj) = IA(ai ) + IB(bj)− I (ai , bj) = log2
P(ai , bj)

PA(ai ) · PB(bj)

(Expected) transinformation:

I (A ; B) =
∑

a∈A b∈B
P(a, b)·log2

P(a, b)

PA(a) · PB(b)
= −

∑
a∈A b∈B

P(a, b)·log2
PA(a) · PB(b)

P(a, b)
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8.5 Transinformation
Transinformation is Non-Negative

Proposition: (Expectation of) transinformation is non-negative.
Proof:

I (A;B) = −
∑

a∈A b∈B
P(a, b) log2

PA(a) · PB(b)

P(a, b)
(definition)

≥ − log2

( ∑
a∈A b∈B

P(a, b)
PA(a) · PB(b)

P(a, b)

)
(Jensen on negative log)

= − log2

( ∑
a∈A b∈B

PA(a) · PB(b)

)
(reduction)

= − log2

(∑
a∈A

PA(a) ·
∑
b∈B

PB(b)

)
(distributivity)

= − log2(1 · 1) = 0 (probability)
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8.5 Transinformation
Outlook

Classically modeled information leads to non-negative transinformation.

Quantum phenomena can be interpreted as
having negative information (Feynman: 1984 & 1987 (in Hiley & Peat: Quantum
implications))
exhibiting interference (wave intuition)
being deterministic plus guide wave (Bohmian mechanics)
requiring an orthomodular logic (Birkhoff)
holistically dependent on the entire universe (Zurek, Pietschmann)
being completely described by a Fortran program

Glacier metaphora...
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9. Information Channels

9.1. Transforming Information and
Processing Data

9.2. Concept of a Channel

9.3. Symmetric Binary Channel

9.4. Channel Capacity and Conditional
Entropy

1. Motivation

2. (Non-)Determinism

3. Where are the Difficulties?

4. Algorithmic Information Theory

5. Probabilistic Information Theory

6. Shannon Information Theory

7. Information Sources

8. Products and Compounds

9. Information Channels

10. Kullback-Leibler Divergence

11. Overview on Coding Theorems
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9.1 Transforming Information and Processing Data
Definition: Push Forward Measure

Let (A, p) be an information source and f : A→ B an arbitrary function.

We recall: A finite, p : 2A → [0, 1] probability measure, p on 2A induced by its restriction p|A : A→ [0, 1] to A.

The push forward measure of p under f (“Bildmaß”) is the uniquely defined function
f ∗ : 2B → [0, 1] which makes the following diagram commutative:

A
p //

f
��

[0, 1]

B
f ∗(p)

==
equiv.

2A
p //

f
��

[0, 1]

2B
f ∗(p)

==
equiv.

f ∗(p) = p ◦ f −1

[f ∗(p)]({a}) = p(f −1({a})

[f ∗(p)](U) = p(f −1(U))
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9.1 Transforming Information and Processing Data
Data Processing Theorem: Entropy of a Transformed Source

Definition: Function f : A→ B remaps the symbols and transforms information source
S(A, p) into information source (S) := (B, f ∗(p)).

Data Processing Theorem:2

H( f (S) ) ≤ H(S)

Special Case 1: Equality if and only if f is a bijection.

Special Case 2: Collapsing symbols (f (a1) = f (a2)) destroys information.

Special Case 3: If f is constant, then H( f (S) ) = 0

Interpretation: Deterministic processing cannot increase the entropy.

Application: Applying scrambling functions cannot be used to increase the entropy of a
source of randomness. Important in cybersecurity.

2Weak form; there is a stronger version using Markov Chains!
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9.1 Transforming Information and Processing Data
Proof of Weak Data Processing Theorem (1)

Proof obligation: Make the sum

H(f (S)) = Ef ∗(p);b∈B(If ∗(p)(b)) = −
∑
b∈B

p(f −1({b})) · log2(p(f −1(b)))

larger-or-equal until we obtain

H(S) = −
∑
a∈A

p(a) log2(p(a))

There are three types of summands in
∑

b∈B .

Type 1: f −1({b}) = ∅ has no contribution and may be neglected due to a continuity
argument and 0 · log2(0) = limx→0+ x log2(x) = 0.

Type 2: f −1({b}) = {a} only produces a 1-1 relabeling.

Type 3: f −1({b}) = {a1, . . . , ak} with some k .
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9.1 Transforming Information and Processing Data
Proof of Weak Data Processing Theorem (2)

−p({a1, . . . , ak})·log2(p({a1, . . . , ak})) = [p(a1)+. . .+p(ak)](− log2)[p(a1)+. . .+p(ak)]

Using Jensen inequality on the convex function (− log2)

≤ [p(a1) + . . .+ p(ak)][p(a1)(− log2)(p(a1))) + . . .+ p(ak)(− log2)(p(ak))]

The sum of probabilities is less-or-equal 1

≤ −p(a1) log2(p(a1))− . . .− p(ak) log2(p(ak))

The theorem follows from an application of all 3 types.

The special cases are easy to see.
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9.1 Transforming Information and Processing Data
Do Classical Physical Processes Destroy Information? (2)

Liouville Theorem: Phase space volumes, when transported
by the flow of a Hamiltonian evolution, stays constant.

Interpretation: The phase space points move like an incompressible liquid.

In time discrete and space discrete situations this corresponds to:

Interpretation: If the information source transformation function is bijective, it does not
merge or “compress” points (f (a1) = f (a2)) and the entropy remains constant.

Thus: Conservative Hamiltonian systems do not destroy or generate information.

% Î ½ 131 188 9. Information Channels 9.1. Transforming Information and Processing Data È C.H.Cap



9.1 Transforming Information and Processing Data
Do Quantum Physical Processes Destroy Information?

We know: Density operator ρ evolves by conjugation with a unitary semi-group:

ρ(t) = U(t)ρ(0)U∗(t)

We know: von Neumann entropy is invariant under unitary transformation:

S(UρU∗) = S(ρ)

Thus: Closed quantum mechanical systems do not destroy or generate information.
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9.2 Concept of a Channel
Intuition for Finite Memoryless Channel

Generalize: From deterministic transformation to probabilistic transformation.

Channel mechanism:
Whenever the channel sees an input symbol a ∈ A at the input port
it produces a random output symbol b ∈ B at the output port.
Probability may depend on input symbol a ∈ A
For a ∈ A we know the probability distribution of the produced output symbol.

Finite: From a finite number of different (digital) symbols one symbol is provided.

Memoryless: Assume a repetition of channel transmissions and
1 probability is time-independent ⇒ can model by one value
2 repeated transmissions are pairwise independent ⇒ probabilities multiply
3 in repeated transmissions, relative symbol frequency converges to probability
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9.2 Concept of a Channel
Definition for Finite Memoryless Channel

A (finite, memoryless) information channel is a triple C = (A, c ,B) consisting of
1 a finite set A, whose elements are called input symbols
2 a finite set B , whose elements are called output sybols
3 a function c : A→M(B), which maps every input symbol a
to a probability measure c(a)(·) : 2B → [0, 1]. M: "set of measures"

c(a) : 2B → [0, 1] or rather: on σ − algebra

c(a) : B → [0, 1] with
∑
b∈B

c(a)(b) = 1

Most convenient form:

c : A× B → [0, 1] with ∀a ∈ A :
∑
b∈B

c(a, b) = 1
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9.2 Concept of a Channel
Situation 1: Clamping Input to a Channel

Observation: If we clamp the input of a channel to a fixed symbol a ∈ A, we see an
information source over B at the output of the channel with probability measure
c(a) : B → [0, 1].

Observation: A channel is an (input symbol)-parametrized information source.

Observation: In the clamped situation, all information at the channel output is channel
noise. There is no information at the input!
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9.2 Concept of a Channel
Situation 2: Connecting a Source to a Channel

Architecture: Information source (A, s) is connected to input of channel (A, c ,B).

Independence: Channel action is independent from source action.

Consequence: Probability that we see input a and output b is given by:

p(a, b) = s(a) · (c(a, b)

Thus: Conditional probability to get output b under the condition of input a is

p(b|a) =
p(a, b)

p(a)
=

s(a) · c(a, b)

s(a)
= c(a, b)

matches the interpretation of c(a, b) from before.

Reminder: In a non-quantum situation measuring the input character has no influence
on its probabilities.
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9.2 Concept of a Channel
Situation 3: Interpreting Output of a Channel

Question: We got output symbol b. With which probability was a the input symbol?

p(a|b) =
p(a, b)

pA(b)
=

s(a) · c(a, b)∑
α∈A s(α) · c(α, b)

Observation 1: When source is equi-distributed, it is a weighted average of the channel
factors:

c(a, b)∑
α∈A c(α,b)

Observation 2: When source is skewed, it may heavily depend on the source
distribution.
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9.2 Concept of a Channel
Example: Typical Channel (1)

A := {R,S} B : = {ρ, σ, τ} ca∈A; b∈B

ρ σ τ

R

S

(
0.8 0.1 0.1

0.0 0.0 1.0

)
1

1

0.8 0.1 1.1 2

R @input becomes ρ @output
with some errors made by channel

S @input reproduced as τ @output

Channel matrix:
Rows are stochastic: Rows sum to 1.
Columns are not stochastic.
Overall sum is number of input symbols.
Blue: Marginal sums, which here are not probability distributions.
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9.2 Concept of a Channel
Example: Typical Channel (2)

Clamping the C-input to R produces an information source over {ρ, σ, τ} with
pR↪→C(ρ) = 0.8 pR↪→C(σ) pR↪→C(τ) = 0.1.

Clamping the C-input to S produces an information source over {ρ, σ, τ} with
pS ↪→C(ρ) = pS ↪→C(σ) = 0 pS(τ) = 1.

Connecting the source S = ({R, S}, s) with s(R) = 0.2 and s(S) = 0.8 to the C input
port produces an information source over {ρ, σ, τ} with

pS→C(ρ) = s(R)c(R, ρ) + s(S)c(S , ρ) = 0.16

pS→C(σ) = s(R)c(R, σ) + s(S)c(S , σ) = 0.02

pS→C(τ) = s(R)c(R, τ) + s(S)c(S , τ) = 0.82
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9.2 Concept of a Channel
Connecting Sources to Channels

Convention: Write channel matrices as above:
Rows denote input ports
columns denote output ports.

Convention: Write information sources as row vectors.
In our case:

(
pS(R) pS(S)

)
Result: Connecting the source S to the channel C.

Produces information source S → C
Characterized by the row vector:

~pS→C = ~S ·
↔
C
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9.2 Concept of a Channel
Channels as Compound Sources, Definition

Now we model source-channel interaction as compound information source S . C.

Channel Protocol: Observe occurrence of input aj ∈ A and then output bj ∈ B .

Source probability: s : A→ [0, 1] with
∑

a∈A s(a) = 1

Channel description: c : A× B → [0, 1] with ∀a :
∑

b∈B c(a, b) = 1

Compound probability: p : A× B → [0, 1] with p(a, b) := s(a) · c(a, b)
Product warranted due to assumption of independence.

Is p really probability on A× B ? Check that
∑

a,b p(a, b) = 1.∑
a,b

p(a, b) =
∑
a

∑
b

s(a) · c(a, b) =
∑
a

s(a) ·
∑
b

c(a, b)︸ ︷︷ ︸
=1

=
∑
a

s(a) = 1
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9.2 Concept of a Channel
Channels as Compound Sources, Analysis

We study the channel protocol S . C as compound p : A× B → [0, 1].

1. Marginal: pA : A→ [0, 1] recovers the (source) distribution s at the input port.
pA(a) =

∑
b∈B

s(a) · c(a, b) = s(a) ·
∑
b∈B

c(a, b) = s(a)

2. Marginal: pB : B → [0, 1] is the symbol distribution at the output port.

Joint: In general: P(X ∩ Y ) = P(X ) · P(Y |X )
Specialized: P(i = a ∧ o = b) = P(i = a) · P(o = b | i = a)
Here: p(a, b) = s(a) · c(a, b)

p(a, b) probability to see pair (a, b) in the protocol

Conditional: c(a, b) conditional probability that the channel outputs b
under the condition that the provided input was a
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9.3 Symmetric Binary Channel
Definition of Symmetric Binary Channel

Symbols for input A = {0, 1}, output B = {X ,Y }, channel behavior as below.

0
1−p //
p

&&

X

1
1−p

//
p

88

Y

X Y
0
1

(
1− p p
p 1− p

)
with p ∈ [0, 1].

Symmetric: Exchanging the roles of the symbols (either in input or in output)
does not change anything. Matrix is bi-symmetric.

When coupled to source: two-parameter system in (s, p) ∈ [0, 1]2

s Probability distribution of source; here of symbol 0

p


p = 0 Deterministic mapping input to output
p = 1 Deterministic mapping input to output, dual variant
p ∈ (0, 1) Some room for "error"
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9.3 Symmetric Binary Channel
Probabilities at the Output Ports
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Probability of X is s + p − 2 ∗ s ∗ p

Fig. 20: Probabilities of the output symbols in the symmetric binary channel. For p = 0 we see an exact reproduction
of the source distribution. When moving from p = 0 to p = 1 the straight line is "flipped". Probabilities of X and
Y add up to 1.
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9.3 Symmetric Binary Channel
Entropy Analysis (1): Input Port and Output Port
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Fig. 21: The entropy at the input port depends only on the source parameter s. The entropy at the output port is
larger and depends also on the channel parameter p. Idea: Clamp input to fixed value to see influence of channel
alone (see Fig. ??).
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9.3 Symmetric Binary Channel
Entropy Analysis (2): Output Port with Clamped Input
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Fig. 22: Clamping the input to a fixed value reveals the entropy on the output port for constant input. It is not
necessarily the same for all inputs but here, for the symmetric channel, it is. p = 0 and p = 1 is a deterministic
mapping.
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9.3 Symmetric Binary Channel
Entropy Analysis (3): How does Output Entropy arise?
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Fig. 23: Looking at the entropy from the input source and the entropy from the channel at clamped inputs gives
us an idea why the shape of the output entropy is as it is.
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9.3 Symmetric Binary Channel
Parameter Set of Maximum Output Entropy (1)
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Fig. 24: Contour plot of entropy found at the channel output. It confirms that on the parameter set {(s, p)|s =
0.5 ∨ p = 0.5} we have maximum output entropy.
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9.3 Symmetric Binary Channel
Parameter Set of Maximum Output Entropy (2)

Situation 1: Deterministic Mapping

p = 0 channel matrix
(
1 0
0 1

)
and p = 1 channel matrix

(
0 1
1 0

)

Channel implements error free, non-random mapping of source: 0 7→ X 1 7→ Y or
1 7→ X 0 7→ Y .

We get maximal output entropy only for s = 0.5 (where the source alone produces
maximum entropy).
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9.3 Symmetric Binary Channel
Parameter Set of Maximum Output Entropy (3)

Situation 2: No Effect from Input

p = 0.5 channel matrix
(
0.5 0.5
0.5 0.5

)
Input symbol has no effect at all, for all s.

Proof: Joint probabilities are
(

0.5 · s 0.5 · s
0.5 · (1− s) 0.5 · (1− s)

)
We get:

p(o = X ) =
1
2

= p(o = X |i = 0)

p(o = X ) =
1
2

= p(o = X |i = 1)

Thus: Output o = X is independent of the choice of the input i = 0 or i = 1.
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9.3 Symmetric Binary Channel
Parameter Set of Maximum Output Entropy (2)

Situation 3: Maximal Source Entropy

At s = 0.5, source entropy is maximal.

At p = 0 and at p = 1 there is no disturbance by the channel.

At p = 0.5 there is maximal disturbance by the channel, so strong that even no source
information can go through.
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9.3 Symmetric Binary Channel
Input-Output Transinformation

Transinformation of the channel
protocol models the amount of information
output port has in common with input port.

Best model for channel information flow.

Graph corresponds to our analysis.

p = 0.5 maximal disturbance.
p = 0 and p = 1 source undisturbed.
At every p with s = 0.5
source most effective for channel.
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Fig. 25: Input-output transinformation of symmetric
binary channel.
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9.3 Symmetric Binary Channel
Example: Asymmetric Binary Channel

Symbols for input A = {0, 1}, output B = {X ,Y }, channel behavior as below.

0
1−p //
p

&&

X

1
1−0.2·p

//
0.2·p

88

Y

X Y
0
1

(
1− p p
0.2 · p 1− 0.2 · p

)
with p ∈ [0, 1].
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Fig. 26: Just to show that for an asymmetric binary channel, the situation is in fact more twisted.
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9.4 Channel Capacity and Conditional Entropy
Channel Capacity

For a channel C = (A, c ,B) and a suitable source S = (A, s)
the joint probability is (a, b) 7→ s(a) · c(a, b) and the
transinformation thereof shall be written I (S ; C)

Fact 1: Given a channel, the transinformation depends on the
(probability distribution) of the source.

Fact 2: The source can be adapted to the channel to maximize the transinformation.

The capacity C(C) of a channel C = (A, c ,B) is the
maximum value of the transinformation a suitable source S = (A, s) coupled to a
channel may achieve.

C(C) := sup
S

I (S ; C)
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9.4 Channel Capacity and Conditional Entropy
Motivation: Conditional Entropy

Conditioning studies changes a condition imposes on probability or info content.
Entropy is the expectation value of the information content.

Conditional entropy is defined as the
normal expectation value of the conditional information content.

Recall: Condition also affects the expectation value operator.
Cave: The conditional entropy could be defined but is not defined as

Conditional expectation value of the normal information content.
Conditional expectation value of the conditional information content.

This makes a difference, since conditioning-induced norming affects
1 probabilities by a multiplicative factor
2 information content additively via the logarithm
3 expectation value operators via the summation range
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9.4 Channel Capacity and Conditional Entropy
Definition: Conditional Entropy

Let S = (A, p) be an information source. Let X ⊆ A with p(X ) 6= 0.

The conditional entropy H|X (Q) of the source S under the condition X is the
expectation value of the conditional information content:

H|X (S) = H(S|X ) =
∑
a∈A

p(a)·I|X (a)) = −
∑
a∈A

p(a)·log2(p|X (a)) = −
∑
a∈A

p(a)·log2
p(a)

p(X )
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9.4 Channel Capacity and Conditional Entropy
Joint Entropy for Compounds

Let C = (A× B, p) be a compound.

The (joint) entropy is the expectation value of the joint information content:

H(C) = H(A,B) = −
∑

a∈A,b∈B
p(a, b) · log2 p(a, b) = E(I (a, b))

The marginal entropies are the entropies of the marginal information content:

HA = H(A) = −
∑
a∈A

pA(a) · log2 pA(a)

HB = H(B) = −
∑
b∈B

pB(b) · log2 pB(b)
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9.4 Channel Capacity and Conditional Entropy
Connecting Joints, Marginals and Conditionals

For probabilities we had: p(a, b) = pA(a) · p(b|a).

H(Q) = H(A,B) = −
∑
a,b

p(a, b) · log2 p(a, b) = −
∑
a,b

p(a, b) · log2 (pA(a) · p(b|a)) =

−
∑
a,b

p(a, b) · log2 pA(a)−
∑
a,b

p(a, b) · log2 p(b|a) =

−
∑
a

(∑
b

p(a, b)

)
︸ ︷︷ ︸

=pA(a)

· log2 pA(a)−
∑
a,b

p(a, b) · log2 p(b|a) =

−
∑
a

pA(a) · log2 pA(a)−
∑
a,b

p(a, b) · log2 p(b|a) = HA(Q) + H|B(Q) = H(A) + H(A|B)

For entropies we obtained: H(A,B) = H(A) + H(B|A) = H(B) + (A|B)
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9.4 Channel Capacity and Conditional Entropy
Channel Equations: Derivation from Transinformation

I (A ;B) =
∑

a∈A b∈B
p(a, b) · log2

p(a, b)

pA(a) · pB(b)
=

+
∑
a,b

p(a, b) · log2 p(a, b)−
∑
a,b

p(a, b) · log2 pA(a)−
∑
a,b

p(a, b) · log2 pB(b) =

−H(A,B) + H(A)︸ ︷︷ ︸
−H(B|A)

+H(B) = H(B)− H(B|A) = (similarly) = H(A)− H(A|B)

We obtain the channel equations:
H(A) = H(A|B) + I (A ;B)

H(B) = H(B|A) + I (A ;B)

H(A,B) = H(A|B) + I (A ;B) + H(B|A)
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9.4 Channel Capacity and Conditional Entropy
Channel Equations: Graphical llustration

H(A) = H(A|B) + I (A ;B)
H(B) = H(B|A) + I (A ;B)
H(A,B) = H(A|B) + I (A ;B) + H(B|A)

H(A) = HA

H(A|B) Dropped by channel

I (A ;B)

Transmitted by channel

I (A ;B)

Noise generated by channel H(B|A) H(B) = HB

H(A,B)
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9.4 Channel Capacity and Conditional Entropy
Example: Deterministic Channel

An information channel (A, c ,B) is called deterministic, iff
∀a ∈ A : ∃b ∈ B : c(a, b) = 1.

Properties of a deterministic channel:

H(Y |X ) = 0.

I (X‖Y ) = H(Y ).
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10. Kullback-Leibler Divergence
Definition: Kullback-Leibler Divergence

Let A be a set of symbols.
Let P = (A, p) and Q = (A, q) two information sources over this set A.
Assume: q vanishes for no symbol. This allows to condition on every a ∈ A for Q.

The Kullback-Leibler divergence is defined as

D(p, q) :=
∑
a∈A

p(a) · log2
p(a)

q(a)
= −

∑
a∈A

p(a) · log2
q(a)

p(a)
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10. Kullback-Leibler Divergence
Motivation: Kullback-Leibler Divergence

Sufficiently general formula structure
1 Expectation value of a
2 logarithm of a
3 conditioned
4 probability

Motivation can be found in the possible usages.

Fig. 27: Kullback-Leibler
divergence is a swiss army
knife of information theory.
Rights see appendix.
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10. Kullback-Leibler Divergence
Example: Binary Sources (1)

Consider two binary sources P and Q over {0, 1}.

The sources are given by a parameter p and a parameter q as follows:

pP(0) = p pP(1) = 1− p

pQ(0) = q pQ(1) = 1− q

For the Kullback-Leibler divergence we get:

D(p, q) = p · log2
p

q
+ (1− p) · log2

1− p

1− q
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10. Kullback-Leibler Divergence
Example: Binary Sources (2)
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Fig. 28: Kullback-Leibler divergence D(p, q) of two binary sources, characterized by parameter p and q, respectively.
Note that D(p, q) = 0⇔ p = q. This prompts the question whether it is a metric!
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10. Kullback-Leibler Divergence
Example: Binary Sources (3)
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Fig. 29: Kullback-Leibler divergence (p, q) 7→ D(q, p) as opposed to (p, q) 7→ D(p, q) in the earlier plot. All plot
parameters are the same. Comparison – short of rounding effects – suggests that it is not symmetric.
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10. Kullback-Leibler Divergence
Is the Kullback-Leibler Divergence a Metric?

No it is not a metric.

Positive definite: ∀p, q : D(p, q) ≥ 0 and D(p, q) = 0⇔ p = q

Not symmetric: D(p, q) = D(q, p)

D could be made symmetric: Ds(p, q) = D(p,q)+D(q,p)
2

No triangle inequality: D(p, q) +D(q, r) ≥ D(p, r)
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10. Kullback-Leibler Divergence
Asymmetry
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Fig. 30: Plotting D(p, q)−D(q, p) to illustrate the asymmetry of the Kullback-Leibler divergence. Note, how this
difference is zero for p = q (positive definite). Note, how this difference is zero for p = 1 − q (symmetry of the
binary source).
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10. Kullback-Leibler Divergence
Symmetrized Variant
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Fig. 31: Symmetrized Kullback-Leibler divergence Ds(p, q) = (D(p, q) + D(q, p))/2 of two binary sources,
characterized by parameter p and q, respectively. Note that D(p, q) = 0⇔ p = q
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10. Kullback-Leibler Divergence
Kullback-Leibler Connections

Transinformation as KLD from the joints to the product of the marginals:

I (A ;B) = D(p, pA ⊗ pB) = Da,b(p(a, b), pA(a) · pB(b))

Where p : A× B → [0, 1], pA : A→ [0, 1] and pB : B → [0, 1],
with pA ⊗ pB : A× B → [0, 1] as (pA ⊗ pB)(a, b) = pA(a) · pB(b).

Redundancy as KLD to the equi-distribution:

R(p) = D(p, un)

Where |A| = n and un : A→ [0, 1] be the equi-distribution on A.

Entropy as co-KLD to the equi-distribution

H(p) = Hmax −D(p, un)

Conditional Entropy as KLD:

H(A|B) = H(A)− I (A ;B) and both right-side terms are KLDs
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11. Overview on Coding Theorems
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11. Overview on Coding Theorems
The Problems of Coding Theory

Problem 1: Source Inefficiency
Non-equidistribution in source symbols make a source less efficient.
It produces less information per symbol on the average than theoretically possible.

Problem 2: Source Adaption
An information source may not be optimally adjusted to the channel.
The transinformation of a source/channel compound is smaller than channel capacity.

Problem 3: Channel Information Loss
The randomness in a channel may lead to loss of source information.
Concept of channel capacity points to channel-source adaptation.

Problem 4: Channel Noise
The randomness in a channel may introduce additional, unwanted noise.
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11. Overview on Coding Theorems
The Solutions by Shannon

All these problems may be dealt with.

The solutions can be made asymptotically optimal.
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11. Overview on Coding Theorems
Shannon Coding Theorems

Source coding theorem: Every source can be recoded so as to
asymptotically achieve nearly the maximally possible entropy.

Channel coding theorem: By suitable coding at the input and output port, a channel
can be used such that asymptotically at the same time two goals can be achieved:
1 the error rate through the system is nearly zero.
2 the channel capacity is utilized as nearly as good as possible given a specific error rate.

Nearly: As close as we want but not completely. (Uses some ε− δ definition.)
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11. Overview on Coding Theorems
Definitions: Monoids and Codings

Let A and B be two finite alphabets and let ε denote the empty word.
Let B0 := {ε}
Let B∗ := ∪n∈N0B

n

A coding is a function f : A→ B∗.

The extension of a coding f : A→ B∗ is the function f ∗ : A∗ → B∗, uniquely defined by

f (ε) = ε ∀x , y ∈ A∗ : f (xy) = f (x)f (y)

The n-th extension f n : An → B∗ of a coding f : A→ B∗ is the restriction of its
extension f ∗ : A∗ → B∗ to An.
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11. Overview on Coding Theorems
Definition: Source Extensions

The n-th extension of an information source S = (A, s) is the information source
Sn = (An, sn) where

sn(a1 . . . an) := s(a1) · . . . · s(an)

Interpretation:
1 n pairwise independent copies of the information source.
2 We may think sequential or parallel.

Motivation: When using sources and channels we are not interested in single
but in multiple usage.
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11. Overview on Coding Theorems
Definition: Decoding

A coding f : A→ B∗ is called uniquely decodeable,
iff its extension f ∗ : A∗ → B∗ is injective.
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11. Overview on Coding Theorems
Prefix Free

Definition: A subset X ⊆ B∗ is called prefix free
iff ∀w ∈ X : ∀u ∈ X : ∀v ∈ B∗ : u 6= wv .

Interpretation: No prefix of a word from X is in X .

Definition: A coding f : A→ B∗ is called prefix free
iff its image f (A) is prefix free.

Propositon: (1) A prefix free coding is uniquely decodable.
(2) The converse is not true.
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11. Overview on Coding Theorems
Motivation of the Prefix-Free Condition

We consider 3 situations:

f (a) = 11 and f (b) = 111. What does 111111 encode? f ∗(aaa) = 111111 = f ∗(bb)

f (a) = 01 and f (b) = 1. What does 011 encode? We get f ∗(ab) = 011, which is the
only pre-image, since no code-word in {01, 1} occurs as prefix of another code word.

f (a) = 10 and f (b) = 1. What does 110 encode? We get f ∗(ba) = 110, which is the
only pre-image, since no code-word in {10, 1} occurs as suffix of another code word.
However, we do not understand this while reading 110 from left to right – we only realize
it at the end.

Prefix-freedom allows unique decoding while reading the code from start to end.

Note: Nomenclature in literature is "prefix code" instead of "prefix-free" code (which I
consider misleading).
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11. Overview on Coding Theorems
Example: Non Prefix-Free Decoding

We consider

f (a) = 01 and f (b) = 011.

The code is not prefix-free, since 01 is a prefix of 011.

However, the code is uniquerly decoding.
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11. Overview on Coding Theorems
Efficiency of a Source-Coding

The average code word length of a coding f : An → B∗ for a source S = (A, s) is

LS,f =
∑

a∈An s(a) · len(f (a))

The relative efficiency of a coding is

ES,f =
H(S)

LS,f · log2 |B|

Intuitively clear: ES,f ≤ 1.
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11. Overview on Coding Theorems
Shannon Source Coding Theorem

Theorem: Every finite memoryless information source S = (A, α)
may be coded to asymptotic optimal efficiency.

More precisely: For every ε > 0 there exists an n ∈ N and a uniquely decodeable
coding f : An → B∗ such that

1− ε < H(S)

LS,f · log2 |B|
≤ 1

Interpretation: The left inequality tells us how good we should be able to code.
The right inequality tells us how good it can get at most.

% Î ½ 183 188 11. Overview on Coding Theorems È C.H.Cap



11. Overview on Coding Theorems
Shannon-Weaver Communication System (1)

A Shannon-Weaver Communication System consists of the following components:
1 An information source S = (A, s) over A
2 A source encoding function e : An → B∗

3 A channel (B, c ,D)
4 A decoding function d : D∗ → An

Sn // An e // B∗
C // D∗

d // An
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11. Overview on Coding Theorems
Shannon-Weaver Communication System (2)

1 The information source delivers a message ~a ∈ An. This is random.
2 The source encoding turns this into a word over B . This is deterministic.
3 The channel transmits the individual characters according to c . This is random again.
4 The decoding function transforms this back into a word in An. This is deterministic.
5 The decoding might correct some errors.

In toto, a communication system can be regarded as a compound of the form An × An

with a probability p : An → An, generated as described.

In p(~i , ~o) the word ~i is called the input and the word ~o is called the output.

The error probability of a communication system is given by

p(~i 6= ~o) = p( {(~a, ~b)} ∈ An × An | ~a 6= ~b})
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11. Overview on Coding Theorems
Shannon Channel Coding Theorem

Situation: Let S = (A, s) be a finite, memoryless information source and C = (B, c,D)
a channel. Let ε > 0 and δ > 0 be small positive real values.

Theorem: We can find an n, a source encoding function e : An → B∗ and a decoding
function d : B∗ → An such that the resulting communication system satisfies:

Error: The probability of an error is smaller than ε
Transfer: The achievable transinformation is at least RC(ε)− δ

For a given maximal error probability ε the achievable transinformation is always
less-or-equal to the rate function:

RC(ε) =
C(C)

1− H2(ε)

H2(x) = −x log2(x) + (1− x) log2(1− x) is the entropy function of a binary source.
C(C) is the capacity of the channel.
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