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1. Conceptual Introduction

What is it about?
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1. Conceptual Introduction

Basic Problem

Victor: Do you know the password?
Peggy: Yes.
Victor: Prove it.
Peggy: The password is "Black rose"
Problem 1: Victor: Thank you. Now | also know the password.
Problem 2: Eve: Shh... | am Eve. | was eavesdropping. and know the password.
AE O 4«0 »59 <« E>» 1. Conceptual Introduction «E>» @ CH.Cap



1. Conceptual Introduction
More Elaboration (1)

>
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Idea:

Situation:

Peggy:
Victor:

Attempt 1:

Victor:
Peggy:

Attempt 2:

Victor:
Peggy:

Identity is given by an asymmetric (public, private) key pair.

Proving access rights by proving asymmetric identity
"I know the private key belonging to this public key."
"Cool. Prove this!"

Rendering the password
"Tell me the key!"
"This defeats the purpose of asymmetric schemes."

Signing messages as proof-of-password

"This is message X, please sign it"

"X could be the SHA-256 hash of a document where
| promise to pay 100 Bitcoin to Victor."
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1. Conceptual Introduction

Discussion

Why do we sign hashes of documents instead of documents?

What, in a normal signing scenario, prevents the following attacks?

@ Victor presents a hash X which does not match the document to be signed.

@ Victor presents a hash X for which he has found a hash collision.
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1. Conceptual Introduction

More Elaboration (2)

Attempt 3: Decrypting as proof-of-password
Victor: "This is one of your cipher texts C, please decrypt it"
Peggy: "Then you will learn the plain text of C"

"Then you will learn one pair of (cipher, plain) text"
"| protest against your adaptive chosen cipher text attack"
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1. Conceptual Introduction

Formal Definition

A zero-knowledge interactive proof system for a password is a protocol where Victor and

Peggy exchange messages about some password, at the end of which the following
properties hold:

O Security:
@ Completeness: If Peggy knows the password, Victor will be convinced of that.
® Soundness: If Peggy does not know the password, Victor will discover that.

@ Zero Knowledge:
If Peggy adheres to the protocol and knows the password: Victor learns nothing
beyond the fact that Peggy knows the password.

In particular: Victor learns nothing about a distribution on the set of possible
passwords.
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1. Conceptual Introduction

Remarks on the Definition

Note 1: Completeness and soundness hold probabilistically, ie. except for a very small
probability, which can be pushed down with further rounds of the interactive protocol.

Note 2: If Peggy does not know the password, Victor may learn all kinds of things (such
as particular attempts of Peggy to lie to him). However, this is not a problem.

Note 3: If Peggy does not adhere to the particular rules of the protocol, Victor may
learn all kinds of things (including the password). However, this then is the fault of
Peggy, not of the protocol.
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2. Commitment Schemes

A new cryptographic tool required for Zero
Knwoledge Protocols
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2. Commitment Schemes

Cryptographic Anecdote: Stock Broker
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Alice: | am a well known stockbroker.
Bob: Pick some good stocks for me. If they are winners, | will pay you a fee.
Alice: How do | know you will not invest in the stocks

and then forget to pay my fee?
| will rather tell you my selections for last month!

Bob: How will | know you are not selecting those stocks
of which you already know that they performed well last month?

Problem: Alice and Bob need a scheme where:
@ Alice can commit to a choice she can not later change
@ Bob cannot learn too early to what Alice committed
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2. Commitment Schemes

Cryptographic Anecdote: Who shall travel?

Situation:

@ Alice is in the US, Bob is in China and they want to meet.
@ Who shall travel?

Attempt 1:

@ Alice suggests she throws a coin and if it is head then Bob has to travel.
@ Alice says: "l threw a coin. It is head".

@ Bob is not convinced and wants to participate in the decision.

Attempt 2:

@ Alice suggests both throw a coin and if the result is equal then Bob has to travel.
@ Bob says: "I threw a coin. It is tails"

o Alice replies: "Funny. | also got tails"

@ Bob is not convinced.
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2. Commitment Schemes

Commitment Scheme

A commitment scheme is a protocol consisting of two phases:

Phase 1: Commit:

@ Alice choses a value v e V
@ Alice calculates a commit message ¢
© Alice sends the commit message ¢ to Bob

Phase 2: Reveal:

© Alice tells Bob the value v € V she chose
@ Bob checks if this is compatible with the commit message ¢
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2. Commitment Schemes

Required Properties for Commitment Schemes

A commitment scheme must satisfy two properties:

Hiding Property: Bob cannot learn the value Alice has chosen from the commit

message or anything about that value (eg. that one value is more probable than another
value).

Binding Property: Alice cannot change the value she has chosen without Bob realizing

this when comparing the commit message with the value Alice announced in the reveal
phase.
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2. Commitment Schemes

Non-Solution: Hash Function

Procedure:

@ Alice and Bob agree on a cryptographically secure hash function
@ Alice choses a value v € V

@ Alice sends a hash ¢ := h(v) to Bob

© Alice later reveals a value v/ and Bob checks if h(v') = ¢

@ If h(v') = ¢, Bob concludes that v =’

Problem: Violates the hiding property.

© Bob iterates all possible values x € V and compares this to the hash value c.

@ Except in large sets V, Bob will learn the value too early.

© Even in large sets V, Bob can probe for values, which tells him something about the
probability distribution.
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2. Commitment Schemes

Non-Solution: Symmetric Encryption (1)

Procedure:

O Alice and Bob agree on a symmetric algorithm
@ Alice choses a secret key k

© Alice sends z := enck(v) to Bob

© Alice later reveals v/ and sends the key k to Bob
@ If enc : k(v') = z Bob concludes that v = v/

Problem: Violates the binding property.

@ Alice can use a different key k' if she later wants to switch to a different value v/
@ Alice probes for keys until she finds a key k’ such that ency (V') = z

O If the set V is small, this is very easy for her.
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2. Commitment Schemes

Non-Solution: Symmetric Encryption (2)
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Further Elaboration:

Assume a small set V.

Objection: Will a different key k" decrypt z into an element of V7

Probably not. So where is the problem?

This is true. But...

Encryption algorithms usually come implemented with random padding.

Why?

If V ={0,1}, then Alice has to match only the desired bit and claim the remainder
to have been part of the random padding she had used (which Bob cannot check)
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2. Commitment Schemes

Solution 1: Symmetric Encryption with Random Padding

Procedure:

@ Alice and Bob agree on a symmetric algorithm to be used

© Bob generates a random string R and sends it to Alice

© Alice choses a secret key k, a value v and sends enck(Rv) to Bob

@ In the reveal phase, Alice sends Bob the value v and the key k

@ Bob decrypts the commit messages, verifies the string R and the value v

Binding Property: Due to the random string R, Alice cannot easily find a different key
where the message decrypts to a different v but to the same R.

Hiding Property: Due to the encryption with an unknown key, Bob cannot learn the
value of v
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2. Commitment Schemes

Solution 2: Hash Function with two step Random Padding

Procedure:

@ Alice and Bob agree on a hash function

@ Alice generates two random strings R1 and R2

© Alice choses a value v and sends h(R1, R2,v) and R1 to Bob
© In the reveal phase, Alice sends Bob all three items (R1, R2, v)
© Bob compares this to the commit message

Binding Property: As soon as Bob knows R1, Alice can no longer change R2 or v
without changing the value of the hash.

Hiding Property: Bob cannot run a brute force attack against v, since he does not
know R1, which increases the size of his search space.
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3. Quisquater Metaphora

An easy way to understand Zero Knowledge
Protocols
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3. Quisquater Metaphora

Problem
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3. Quisquater Metaphora

Solution
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4. Chromatic Number of a Graph

A first zero-knowledge protocol
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4. Chromatic Number of a Graph

Preparation (1)

Concepts:

© Concept of a graph.

@ Set of nodes N.

© Edges as set of two-element node sets or as irreflexive binary relation on M.
@ Every node gets a color: ¢: N — C.

@ Correct coloring: Nodes connected by an edge have a different color.

© Chromatic number: Minimal number of colors needed for a correct coloring.
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4. Chromatic Number of a Graph
Preparation (2)
Know: Let I be the class of all graphs v which have a chromatic number of 3 or larger.

Then the following problem is NP-complete:

Given v € I in node-list form and an integer k > 3.
Does there exist a correct coloring of v with k colors?

Observation 1: Checking a k-coloring is easy.

Observation 2: Deciding whether one exists (or finding one) is very complicated.

Know: The following problem is NP-complete:

Given a graph ~ and a graph §.
Does ~ contain a subgraph which is isomorphic to ¢ is NP-complete.

Observation 1: Given a (subgraph) isomorphism it is easy to check that it is one.

Observation 2: Finding one is very complicated.
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4. Chromatic Number of a Graph

Cryptographic Anecdote

Peggy: Knock, knock, admit me to the party

Victor: Ok. Today is Tuesday.
In my book it says | need to check that you can prove
that the Tuesday-graph ~ can be colored with 237 colors.

Peggy: This is fine. | can show you a coloring.
Victor: No. | am only the guard here. | am not allowed to know the solution.
Peggy: This is fine, | can give you a zero knowledge proof.
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4. Chromatic Number of a Graph

Protocol (1)

Generation: Peggy generates an isomorphic graph 7/ by producing a renumbering
r: N — N as graph isomorphism and adds a few nodes (in ways which do not destroy
the chromatic number)

Two boxes: Peggy prepares two boxes.

@ Box 1: Contains the isomorphism r
@ Box 2: Contains a coloring of the isomorphic (super)graph +/

Commit: Peggy commits to the boxes using a commit scheme.
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4. Chromatic Number of a Graph

Protocol (2)

Choice: Victor choses one of the two boxes and asks Peggy to reveal the chosen box.

Case 1:

Case 2:

It turns out to be box 1.
Victor checks that r is indeed an isomorphism.
This is at most quadratic in the number of nodes.

It turns out to be box 2.

Victor checks that the coloring is indeed a true coloring.

This is linear in the number of edges.
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4. Chromatic Number of a Graph

Completeness and Soundness (1)

Observation 1:

o If Peggy knows a coloring, she can prepare boxes 1 and 2 for as many rounds as
Victor wants to play.

@ She can always generate a fresh isomorphism.

@ She can use the original coloring to obtain a coloring of the isomorphic graph

@ She can always add a few nodes without changing the chromatic number.

Observation 2:

o If Peggy can prepare boxes 1 and 2, she can invert the isomorphism and

@ transport the coloring of the isomorphic graph back to the coloring of the original
graph.

@ leaving out the added nodes.

Observation 3:
@ Peggy can always prepare one of the boxes in a way that it passes the verification.

>
1]

2 30«0 »59 <« = » 4. Chromatic Number of a Graph «E>» @ CH.Cap



4. Chromatic Number of a Graph
Completeness and Soundness (2)
Observation 4:

@ Peggy can prepare an arbitrary isomorphic graph and add a few innocent nodes.
@ For this she does not need to know a coloring.

Observation 5:

@ Peggy can always construct an arbitrary graph with a 217 coloring and make it look
very complicated.
@ For this she does not need to know a coloring of the original graph.

@ Since subgraph isomorphism is NP-complete she will not be caught not using an
isomorphic graph.

Observation 6:

@ Peggy can pass with a chance of 1/2 in a single round of the protocol, even if she
does not know a coloring.
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4. Chromatic Number of a Graph

Zero Knowledge (1)

Question: What does Victor learn from the protocol?
Observation: Victor learns a lot!

Victor learns from box type 1:

@ He learns new graphs which contain the original graph in isomorphic form as a
subgraph.

@ But this is nothing new: Victor can construct such graphs himself.

@ So, Victor does not learn anything from Peggy.

@ He can, more strictly, simulate Peggy's role in the protocol.

Victor learns from box type 2:
@ He learns 217-colored graphs.
@ This is nothing new. Victor can construct such graphs himself.

e Strictly speaking (and assuming Peggy is not cheating), Victor learns 217-colored
graphs which are supergraphs of the original graph.
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4. Chromatic Number of a Graph

Zero Knowledge (2)

Computational versus statistical information:

@ Since subgraph isomorphism is NP-complete, he cannot, computationally, obtain
additional information from these graphs, helping him to solve the original problem.

o Statistically speaking: Victor learns something new.

o Computationally speaking: Victor cannot extract meaningful information from that.

Assume Victor is computationally unbounded:

@ Victor can solve NP-complete problems.

@ Then Victor can find the isomorphism and thus the coloring.

@ But then Victor could also have solved the coloring problem himself.
@ And, again, Victor would not have needed Peggy.
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4. Chromatic Number of a Graph

Zero Knowledge (3)

Notion of protocol simulation:

@ Victor cannot simulate the protocol with Peggy completely.

@ But Victor can simulate the protocol with Peggy in such a manner that a
computationally bounded observer has no chance of finding out the difference
between:

Case 1: Victor simulates Peggy.
Case 2: Peggy is not cheating and participating in the protocol.
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A

4.

Chromatic Number of a Graph

Observations

Interaction:
@ The mechanism crucially depends on a randomized interactive scenario.
o If Peggy knows in advance, which boxes Victor will open, she can cheat.

Nonces:

@ The mechanism crucially depends on the use of nonces.

@ Peggy must always use a different isomorphism.

o If Peggy uses the same isomorphism twice and Victor happens to open box 1 in the
first and box 2 in the second attempt, he learns the secret.

Generalization:
@ Every NP problem can be reduced to an NP-complete problem.

@ For every question of the type x € £ and £ a language with an NP-hard recognition
problem, a zero knowledge proof can be constructed.
o Still: The particular questions must be difficult for Victor
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4. Chromatic Number of a Graph

Abstract View

We use a set of problems which are
@ complicated to solve

@ whose solutions are easy to check

@ which admit problem/solution isomorphisms which are complicated to determine

Public key of Peggy: An instance of the problem Private key of Peggy: A solution of
this instance
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4. Chromatic Number of a Graph

Protocol

Peggy transforms the problem into a random isomorphic instance of the problem Peggy

transforms the solution of her problem into a solution of the random instance

Peggy prepares

@ Box1: The isomorphism (A proof that the isomorphic problem is isomorphic)
@ Box2: The isomorphic problem and its solution

Victor learns isomorphisms
@ which he can check whether they really are isomorphisms
@ but which he learns nothing about the original solution

Victor learns solutions of isomorphic problems

@ which he can check for solution

@ but which do not tell him anything about the original solution
since he cannot figure out the isomorphism himself
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5. Fiat-Shamir Identification

Number theoretic variants of
the graph theoretic protocol
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5. Fiat-Shamir ldentification

Fiat-Shamir Protocol

Motivation:

Graph-based ZKP are burdensome for practical purposes.
Large graphs do not fit on smart cards.

A large graph as public key and a coloring as private key look odd.
Both take much storage space.
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5. Fiat-Shamir ldentification

Number-Theoretic Background

Let n € N act as a modulus.

A number s is called a square root modulo n of the number t modulo n iff
s> =t mod n.

A Blum integer nis a product n = p - g of two prime numbers p, g with p = 3 mod 4
and g =3 mod 4

Known: If a number is a square root modulo a Blum integer, then it has 4 different
square roots.

Known: The following is equally computationally difficult:
e Factoring a Blum integer n.
o Finding the square roots mod n of a number k.

Assumed: Factoring large integers is difficult.
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5. Fiat-Shamir ldentification

Setup of Fiat-Shamir Protocol

Modulus: Trusted third party generates and distributes large Blum integer.

Private key: Peggy choses an s which is coprime to n as private key.
Public key:  Peggy publishes t := s? as her public key.

Security:

o Computing square roots mod n is difficult.

o Calculating the private key s from the public key t = s2 is difficult.
e Nobody can (easily) calculate the private key from the public key.
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5. Fiat-Shamir ldentification

Fiat-Shamir Protocol (1)

Peggy chooses a random value r which is coprime to n.
Peggy computes x = r?> mod n and sends x to Victor.

Peggy prepares two boxes for Victor:
o Casel: r
@ Case 2: rs mod n

Victor picks one box and verifies the picked box:
e Case 1: r>=xmod n
e Case 2: (rs)? = xt mod n
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5. Fiat-Shamir ldentification

Fiat-Shamir Protocol (2)

>
1]

If the verification fails, Victor concludes that Peggy is a liar.

If the verification succeeds, Victor concludes that
@ Peggy is telling the truth -OR-

@ Peggy has succeeded in a 1-out-of-2 chance in lying to him.

Victor asks Peggy for more rounds in the protocol
until he is satisfied with the remaining chance of Peggy lying.
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5. Fiat-Shamir ldentification

Protocol is Secure (1)

If Peggy knows s, she can prepare the data in the two cases as required.

If Peggy does not know s, she will attempt to cheat.

Case 1:

@ Suppose Peggy knew that Victor will chose case 1.

@ Here it is easy to pass the test by following the protocol.

@ In this case, Peggy would lie for the unchosen case 2, as she does not know s.

>
i
0

44« o »59 <« E » 5. Fiat-Shamir Identification «E>» @ CH.Cap



5. Fiat-Shamir Identification
Protocol is Secure (2)

Case 2:

@ Suppose Peggy knew that Victor will chose case 2.

Peggy will prepare a random v and calculate x = u2/tmodn
Division by t works, since t is coprime to n by construction.
Peggy now sends (if asked for case 1) as x the value of u?/t
Peggy now sends (if asked for case 2) the value of u.

Victor will now check if u? = xt.
Since Peggy chose x to be u?/t Victor in fact checks if u? = (u?/t) - t, which holds.

However, if Victor asked her unexpectedly for case 1, she cannot provide a reasonable r
passing the test of r> = x as she already has sent u?/t for x and has no idea of the

square root of t.
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>
1]



5. Fiat-Shamir ldentification

Protocol is Zero Knowledge

From case 1:
@ When Victor receives information r he does not receive any information on s
@ Obviously r is a random number.

From case 2:
@ When Victor receives information rs he does not receive any information on s
e Multiplication by s is a bijection and does not change the random distribution.

What does Victor learn from x alone?

@ x is not equi-distributed!

o After a while, Victor learns that x has the distribution of squares of random coprimes
to n.

@ This means, Peggy is following the (well-known) protocol.

If the distribution is different, then Peggy might be not following the protocol and no
claim is made.

[0 C.H.Cap
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5. Fiat-Shamir ldentification
SE I

n=3-7
r r? rs(s=3) rs(s=4) Remark
0 0 0 0 Special 11 16 12 2
1 1 3 4 12 18 15 6 Not coprime
2 4 6 8 13 1 18 10
3 9 9 12 Not coprime 14 7 0 14 Not coprime
4 16 12 16 15 15 3 18 Not coprime
5 4 15 20 16 4 6 1
6 15 18 3 Not coprime 17 16 9
7T 7 0 7 Not coprime 18 9 12 9 Not coprime
8 1 3 11 19 4 15 13
9 18 6 15 Not coprime 20 1 18 17
10 16 9 19
A= 47 « O » 59 < = » 5. Fiat-Shamir Identification «E>» @ CH.Cap



5. Fiat-Shamir ldentification

Observations (1)

The statistics of column r - s look completely different if we have s =3 or s = 4

The reason:
e We cannot divide by s = 3 (not coprime to modulus).
We can divide by s = 4 (coprime to modulus).

°
@ Thus: We really require s (equivalently: t) to be coprime to n
@ Then we can divide and learn nothing.
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5. Fiat-Shamir ldentification

Observations (2)

There are two values of squares which are coprime: 4, 16.

Each of it has 4 square roots.

There are four values of squares which are not coprime: 7, 15, 9 and 18.
They do not have 4 square roots.

There are the special cases 0 and 1.
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5. Fiat-Shamir ldentification

Observations (3)

Root of very small values:

For large n, the value 4 has a square root mod n of 2.

It has another square root —2, which is equal to n — 2.
For small values of the private key (root)

the public key is a normal (integer domain) square number
the normal (integer) root algorithm quickly calculates a root (and the private key)

>
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More precisely

@ Thus, Peggy must avoid choosing the random s (private key) smaller than /n.

For a private key (root) k with kK < /n

the public key (square) is a normal (integer domain) square number.
Then it is easy to calculate a square root mod n.

Then it is easy to calculate the private key from the public key.

Peggy must avoid choosing her public key as normal (integer domain) square.

@ Note: Above, with n=21, this did not work, with large n it does.
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5. Fiat-Shamir ldentification

Observation (4)

>
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2 51« 0 »59 <« E » 5. Fiat-Shamir Identification <

Suppose Peggy choses r in such a manner that Victor can determine a square root from
2
x=r2

Then Victor will chose case 2, learn r - s, divide by r and learn s.

Thus: Peggy must avoid choosing too small random numbers.

Followup question: Does this restriction severely hamper Peggies random choice of r?
The random numbers she must avoid are in the interval 1 to \/n

With /n bad apples in n possible choices, this leaves a portion of 1/4/n bad apples.

With large n this does not pose a practical problem.
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5. Fiat-Shamir ldentification

Importance of Using a Nonce

Suppose Peggy uses the same r in two rounds.

Victor will get a suspicion on this, if he sees the same x in two rounds.

If Victor observes this, he will ensure that he picks the other case in the second scenario.
From case 1 he learns r.

From case 2 he learns r - s.

Dividing r - s by r he learns the secret key s.

This means, Peggy must store all previously used values of r

For practical purposes:

Peggy can ignore this and rely on the fact that a true random number generator will
repeat values for large n only with an extremely small probability

>
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5. Fiat-Shamir ldentification

Reusing RSA modulus

Observation: In Fiat-Shamir, we can reuse the modulus.
Question: Can we reuse the modulus n in RSA?
Answer: No

If Bob knows the public key (e, n) and the private key d of an RSA scheme, then Bob
can factor ninton=p-q

If Alice uses a different RSA key pair with public key (€', n) and private key d’, with
different €’ but identical n, she can factor n into p - g Calculate Bobs private key d from
Bobs public key e
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6. Feige-Fiat-Shamir Protocol

Making Zero Knowledge Proof
non-interactive
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6. Feige-Fiat-Shamir Protocol

Problems of the Fiat-Shamir Protocol

We need k rounds of communication to establish a security level of 27

Questions:

e What, if latency is too high for this?

o What, if we want to combine several rounds into one?

@ |s there a non-interactive zero knowledge proof mechanism?

Answers:

@ Specific situation: The Feige-Fiat-Shamir Protocl extends the Fiat-Shamir Protocol.
@ General situation: There are two strategies for making the protocols non-interactive.

>
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6. Feige-Fiat-Shamir Protocol

Feige-Fiat-Shamir Protocol

Setup:

@ Let n be a Blum integer.

@ Peggy choses k coprime numbers sy, ..., s, as private keys

o Peggy computes ti, ..., t, with tj := sj2 mod n as public keys
Protocol:

@ Peggy chooses a random r and sends x := r? mod n to Victor.

@ Victor chooses k bits a; € {0,1}.
o Peggy computes y :=r-s* ... s;* mod n and sends it to Victor.
o Victor checks that y? = x - t{* - ... t;* mod n.
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Analysis

6. Feige-Fiat-Shamir Protocol

Observations:

@ Similar details as before — which we leave out here.

@ We need only one round if we combine a sufficient number of keys.
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6. Feige-Fiat-Shamir Protocol

Question

Question: Can every ZK protocol scheme be made non-interactive?

Interactive:
@ Participants can communicate.

@ Security derived from the number of rounds required by the verifier.
@ Prover does not know the choice of the verifier.
@ Prover cannot risk to cheat.
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6. Feige-Fiat-Shamir Protocol

Non-Interactive Zero Knowledge Proofs

Parallel model:

@ One exchange of data is sufficient.

@ Roundtrip: Peggy to Victor, Victor to Peggy, Peggy to Victor.

@ Combines an arbitrary number of rounds into one parallelized round.

Common reference string model:

@ Peggy and Victor run a setup phase.

@ During the setup phase both obtain access to the same (common) random reference
string.

Then Peggy sends a witness for the proof to Victor.

@ Victor accepts or rejects.

>
i
0

59« O »59 <« = » 6. Feige-Fiat-Shamir Protocol )l

it
v
]

[0 C.H.Cap



60 « O » 67

Appendix

«E» LoF§ — [

B (U C.H.Cap



Contents of Appendix

Contents of Appendix

List of Figures LoF
Terms of Use )
Citing This Document —
List of Slides 1
AE 0 61« O »67 «E» LoF§ — [ ® (IU C.H.Cap



List of Figures

L 21

2 22

P 23
A= 62« O » 67 «E>» LoF§ — [T List of Figures B (U C.H.Cap



Terms of Use (1)

Die hier angebotenen Inhalte unterliegen deutschem Urheberrecht. Inhalte Dritter werden unter Nennung der Rechtsgrundlage ihrer
Nutzung und der geltenden Lizenzbestimmungen hier angefiihrt. Auf das Literaturverzeichnis wird verwiesen. Das Zitatrecht in dem fiir
wissenschaftliche Werke iiblichen AusmaR wird beansprucht. Wenn Sie eine Urheberrechtsverletzung erkennen, so bitten wir um Hinweis
an den auf der Titelseite genannten Autor und werden entsprechende Inhalte sofort entfernen oder fehlende Rechtsnennungen nachholen.
Bei Produkt- und Firmennamen kdnnen Markenrechte Dritter bestehen. Verweise und Verlinkungen wurden zum Zeitpunkt des Setzens
der Verweise liberpriift; sie dienen der Information des Lesers. Der Autor macht sich die Inhalte, auch in der Form, wie sie zum Zeitpunkt
des Setzens des Verweises vorlagen, nicht zu eigen und kann diese nicht laufend auf Verdnderungen iiberpriifen.

Alle sonstigen, hier nicht angefiihrten Inhalte unterliegen dem Copyright des Autors, Prof. Dr. Clemens Cap, (©2020. Wenn Sie diese
Inhalte niitzlich finden, kénnen Sie darauf verlinken oder sie zitieren. Jede weitere Verbreitung, Speicherung, Vervielfiltigung oder
sonstige Verwertung auRerhalb der Grenzen des Urheberrechts bedarf der schriftlichen Zustimmung des Rechteinhabers. Dieses dient der
Sicherung der Aktualitidt der Inhalte und soll dem Autor auch die Einhaltung urheberrechtlicher Einschrinkungen wie beispielsweise Par
60a UrhG ermdglichen.

Die Bereitstellung der Inhalte erfolgt hier zur persénlichen Information des Lesers. Eine Haftung fiir mittelbare oder unmittelbare
Schaden wird im maximal rechtlich zuldssigen AusmaR ausgeschlossen, mit Ausnahme von Vorsatz und grober Fahrl&ssigkeit. Eine
Garantie fiir den Fortbestand dieses Informationsangebots wird nicht gegeben.

Die Anfertigung einer persénlichen Sicherungskopie fiir die private, nicht gewerbliche und nicht 6ffentliche Nutzung ist zulissig, sofern sie
nicht von einer offensichtlich rechtswidrig hergestellten oder zuginglich gemachten Vorlage stammt.

Use of Logos and Trademark Symbols: The logos and trademark symbols used here are the property of their respective owners. The
YouTube logo is used according to brand request 2-9753000030769 granted on November 30, 2020. The GitHub logo is property of
GitHub Inc. and is used in accordance to the GitHub logo usage conditions https://github.com/logos to link to a GitHub account. The
Tweedback logo is property of Tweedback GmbH and here is used in accordance to a cooperation contract.

B (U C.H.Cap


https://dejure.org/gesetze/UrhG/51.html
https://dejure.org/gesetze/UrhG/60a.html
https://dejure.org/gesetze/UrhG/60a.html
https://github.com/logos

Terms of Use (2)

Disclaimer: Die sich immer wieder dndernde Rechtslage fiir digitale Urheberrechte erzeugt ein nicht
unerhebliches Risiko bei der Einbindung von Materialien, deren Status nicht oder nur mit
unverhaltnismaBig hohem Aufwand abzukldren ist. Ebenso kann den Rechteinhabern nicht auf sinnvolle
oder einfache Weise ein Honorar zukommen, obwohl| deren Leistungen genutzt werden.

Daher binde ich gelegentlich Inhalte nur als Link und nicht durch Framing ein. Lt EuGH Urteil
13.02.2014, C-466/12 (Pressemitteilung, Blog-Beitrag, Urteilstext). ist das unbedenklich, da die
benutzten Links ohne Umgehung technischer Sperren auf im Internet frei verfiigbare Inhalte verweisen.

Wenn Sie diese Rechtslage stort, dann setzen Sie sich fiir eine Modernisierung des véllig veralteten
Vergiitungs- und Anreizsystems fiir urheberrechtliche Leistungen ein. Bis dahin klicken Sie bitte auf die

angegebenen Links und denken Sie dariiber nach, warum wir keine fiir das digitale Zeitalter sinnvoll
angepalte Vergiitungs- und Anreizsysteme digital erbrachter Leistungen haben.

Zu Risiken und Nebenwirkungen fragen Sie lhren Rechtsanwalt oder Gesetzgeber.

Weitere Hinweise finden Sie im Netz hier und hier oder hier.

AE 0 64 « O » 67 «E» LoF§ — [ ® (IU C.H.Cap


https://curia.europa.eu/jcms/upload/docs/application/pdf/2014-02/cp140020de.pdf
http://www.internet-law.de/2014/02/eugh-es-darf-verlinkt-werden.html
https://www.damm-legal.de/eugh-links-auf-urheberrechtlich-geschuetzte-werke-sind-zulaessig-wenn-diese-werke-frei-zugaenglich-sind
http://rechtundnetz.com/framing-als-urheberrechtsverletzung/
https://www.lto.de/recht/hintergruende/h/bgh-izr46-12-framing-youtube-urheber-zustimmung/
https://www.heise.de/newsticker/meldung/BGH-Linksetzung-kann-Urheberrechte-verletzen-1135956.html

Citing This Document

If you use contents from this document or want to cite it,
please do so in the following manner:

Clemens H. Cap: Zero Knowledge Proofs. Electronic document. https://iuk.one/1033-1211 2. 7. 2023.

Bibtex Information: https://iuk.one/1033-1211.bib

@misc{doc:1033-1211,

author = {Clemens H. Cap},

title = {Zero Knowledge Proofs},
year = {2023},

month = {7},

howpublished = {Electronic document},
{https://iuk.one/1033-1211}

url

Typographic Information:

Typeset on ?today?

This is pdfTeX, Version 3.14159265-2.6-1.40.21 (TeX Live 2020) kpathsea version 6.3.2
This is pgf in version 3.1.5b

This is preamble-slides.tex myFormat(©C.H.Cap

A= 0 65« O » 67 «E» LoF§ — [ & (U C.H.Cap


https://iuk.one/1033-1211
https://iuk.one/1033-1211.bib

List of Slides

A= 0

Title Page ..o 1
OVEIVIEW . ..ot 2

1. Conceptual Introduction

Basic Problem .......... .. ... .. ..ol
More Elaboration (1) ..
Discussion ............
More Elaboration (2)
Formal Definition

Remarks on the Definition ........ ..., 9
2. Commitment Schemes

Cryptographic Anecdote: Stock Broker.................... 11
Cryptographic Anecdote: Who shall travel? . . ... 12
Commitment Scheme........................ ... 13
Required Properties for Commitment Schemes. . ... ... 14
Non-Solution: Hash Function .................. .. 15
Non-Solution: Symmetric Encryption (1) .. 16
Non-Solution: Symmetric Encryption (2) .................. 17

Solution 1: Symmetric Encryption with Random Padding ... 18
Solution 2: Hash Function with two step Random Padding . 19
3. Quisquater Metaphora

S U . v ottt
Problem ..

Solution

66 « O » 67 <

4. Chromatic Number of a Graph

Preparation (1).......... ... i
Preparation (2)........... ... .. .. .
Cryptographic Anecdote ..
Protocol (1) ... ... i
Protocol (2) ... ...
Completeness and Soundness (1)....
Completeness and Soundness (2)..........................
Zero Knowledge (1) ..ot
Zero Knowledge (2) ...
Zero Knowledge (3) .
Observations. ...
Abstract View. .
Protocol

List of Slides & U CH.Cap



A= 0

5. Fiat-Shamir ldentification

Fiat-Shamir Protocol .............. ... .. ... ..o oL 39
Number-Theoretic Background . . ....40
Setup of Fiat-Shamir Protocol ............................ 41

Fiat-Shamir Protocol (1)
Fiat-Shamir Protocol (2)
Protocol is Secure (1) ... ....ooiuiiiiiiiiiiiii
Protocol is Secure (2) ............ ... .. ..o

Protocol is Zero Knowledge . . ....46
Example .. ... 47
Observations (1) ........ ..ot 48
Observations (2) ..., .. 49
Observations (3) .... . . ..50
Observation (4) .............. . ..51
Importance of Usinga Nonce .................coiiueinnn. 52

67 « O » 67 <

Reusing RSA modulus . ........ .. ... i i i 53
6. Feige-Fiat-Shamir Protocol
Problems of the Fiat-Shamir Protocol ..................... 55

Feige-Fiat-Shamir Protocol ........... . .56
Analysis

Question. . . .
Non-Interactive Zero Knowledge Proofs.................... 59
Legend:

[0} continuation slide
O slide without title header
4] image slide

List of Slides

& U CH.Cap



	Title Page 1
	Overview 2
	1. Conceptual Introduction
	Basic Problem 4
	More Elaboration (1) 5
	Discussion 6
	More Elaboration (2) 7
	Formal Definition 8
	Remarks on the Definition 9

	2. Commitment Schemes
	Cryptographic Anecdote: Stock Broker 11
	Cryptographic Anecdote: Who shall travel? 12
	Commitment Scheme 13
	Required Properties for Commitment Schemes 14
	Non-Solution: Hash Function 15
	Non-Solution: Symmetric Encryption (1) 16
	Non-Solution: Symmetric Encryption (2) 17
	Solution 1: Symmetric Encryption with Random Padding 18
	Solution 2: Hash Function with two step Random Padding 19

	3. Quisquater Metaphora
	Setup 21
	Problem 22
	Solution 23

	4. Chromatic Number of a Graph
	Preparation (1) 25
	Preparation (2) 26
	Cryptographic Anecdote 27
	Protocol (1) 28
	Protocol (2) 29
	Completeness and Soundness (1) 30
	Completeness and Soundness (2) 31
	Zero Knowledge (1) 32
	Zero Knowledge (2) 33
	Zero Knowledge (3) 34
	Observations 35
	Abstract View 36
	Protocol 37

	5. Fiat-Shamir Identification
	Fiat-Shamir Protocol 39
	Number-Theoretic Background 40
	Setup of Fiat-Shamir Protocol 41
	Fiat-Shamir Protocol (1) 42
	Fiat-Shamir Protocol (2) 43
	Protocol is Secure (1) 44
	Protocol is Secure (2) 45
	Protocol is Zero Knowledge 46
	Example 47
	Observations (1) 48
	Observations (2) 49
	Observations (3) 50
	Observation (4) 51
	Importance of Using a Nonce 52
	Reusing RSA modulus 53

	6. Feige-Fiat-Shamir Protocol
	Problems of the Fiat-Shamir Protocol 55
	Feige-Fiat-Shamir Protocol 56
	Analysis 57
	Question 58
	Non-Interactive Zero Knowledge Proofs 59

	Appendix
	Contents of Appendix
	List of Figures
	Terms of Use
	Citing This Document
	List of Slides


